Skip to main content

Advertisement

Log in

Chemical Composition, Antioxidant, Antimicrobial and Antiproliferative Activities of Wastes from Pecan Nut [Carya illinoinensis (Wagenh) K. Koch]

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study was carried out to determine the antioxidant, antiproliferative, and antimicrobial activities of shell and husk extracts from two pecan nut cultivars (Wichita and Western). The methanolic extracts by mass spectrometry (MS/MS) were analyzed. The antioxidant activity by ABTS and DPPH methods was evaluated. Antiproliferative activity was evaluated against cervical (HeLa), lung (A549), prostate (PC-3), colon (LS180), cancer cell lines and normal retinal cell (ARPE-19) by MTT assay. Antibacterial activity against Staphylococcus aureus and Escherichia coli by disk diffusion and macrodilution was tested. The results indicated that the phenolic compounds content and antioxidant capacity in nutshell was greater than in husk. Also, an antiproliferative effect of the nutshell extracts from both cultivars in the HeLa gynecological cell line was found. Furthermore, nutshell extracts of both varieties showed antibacterial activity against Staphylococcus aureus. The agroindustrial waste of pecan nutshell to obtain bioactive compounds could be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)

ARPE-19:

Human retinal pigment epithelial cell line

ATCC:

American type culture collection

A549:

Human alveolar epithelial cell line

BCL-2:

Apoptosis regulator [Homo sapiens (Human)]

BIRC5:

Gen baculoviral inhibitor of apoptosis repeat-containing 5

CaCo-2:

Human epithelial colorectal adenocarcinoma cells

CE:

Catechin equivalent

CFU:

Colony-forming unit

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulphoxide

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

GAE:

Gallic acid equivalent

HeLa:

Cervical cell line

HepG2:

Human liver cancer cell line

HHDP:

Hexahydroxydiphenoyl

HTB4:

Bladder cancer cell line

IC50 :

Concentration of a substrate needed to reduce 50 percent of the cell population

LS180:

Intestinal human colon adenocarcinoma cell line

LLC-PKI:

Kidney epithelial cells

MBC:

Minimum bactericidal concentration

MIC:

Minimum inhibitory concentration

MS:

Mass spectrometry

MTT:

Colorimetric assay for assessing cell metabolic activity by reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PC-3:

Human prostate cancer cell line

UV–Vis:

Ultraviolet–Visible spectral region

We:

Nut Western

Wi:

Nut Wichita

References

  1. Barragán, B., Téllez, A., Laguna, A.: Utilización de residuos agroindustriales. Rev. Sist. Ambient. 2, 44–50 (2008)

    Google Scholar 

  2. Al-Zoreky, N.S.: Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 134, 244–248 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.07.002

    Article  Google Scholar 

  3. Mahmud, S., Saleem, M., Siddique, S., Ahmed, R., Khanum, R., Perveen, Z.: Volatile components, antioxidant and antimicrobial activity of Citrus acida var. sour lime peel oil. J. Saudi Chem. Soc. 13, 195–198 (2009). https://doi.org/10.1016/j.jscs.2009.03.001

    Article  Google Scholar 

  4. Delgado-Adámez, J., Gamero Samino, E., Valdés Sánchez, E., González-Gómez, D.: In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24, 136–141 (2012). https://doi.org/10.1016/j.foodcont.2011.09.016

    Article  Google Scholar 

  5. Corzo, D.: Evaluacion de la actividad antimicrobiana del extracto etanolico de Cestrum buxifolium kunth. Rev. Mex. Cienc. Farm. 43, 81–86 (2012)

    Google Scholar 

  6. Saab, A.M., Tundis, R., Loizzo, M.R., Lampronti, I., Borgatti, M., Gambari, R., Menichini, F., Esseily, F., Menichini, F.: Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Nat. Prod. Res. 26, 1741–1745 (2012). https://doi.org/10.1080/14786419.2011.608674

    Article  Google Scholar 

  7. Newman, D.J., Cragg, G.M.: Natural products as pources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016). https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  Google Scholar 

  8. Orona, I., Sangerman, D.M., Fortis, M., Vázquez, C., Gallegos, M.Á.: Producción y comercialización de nuez pecanera (Carya illinoensis Koch) en el norte de Coahuila, México. Rev. Mex. Cienc. Agric. 4, 461–476 (2013)

    Google Scholar 

  9. Romero-arenas, O., Rivera Tapia, J.A., Lopez-Olguín, J.F., Villarreal Espino Barros, O.A., Huerta Lara, M.: Germinación de semillas de Pinus patula en residuos de cáscara de nuez (Juglans regia L.) en vivero nursery. Rev. Iberoam. Cienc Biol. Agropecu. 2, 1 (2007)

    Google Scholar 

  10. SIAP: Servicio de Informacion Agroalimentaria y Pesquera. SAGARPA-México. (2017)

  11. De La Rosa, L., Alvarez, E., Shahidi, F.: Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 59, 152–162 (2011). https://doi.org/10.1021/jf1034306

    Article  Google Scholar 

  12. De la Rosa, L.A., Vazquez-Flores, A.A., Alvarez-Parrilla, E., Rodrigo-García, J., Medina-Campos, O.N., Ávila-Nava, A., González-Reyes, S., Pedraza-Chaverri, J.: Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. J. Funct. Foods. 7, 219–228 (2014). https://doi.org/10.1016/j.jff.2014.02.008

    Article  Google Scholar 

  13. do Prado, A.C.P., da Silva, H.S., da Silveira, S.M., Barret oManique, P.L., Werneck Vieira, C.R., Maraschin, M., Salvador Ferreira, S.R., Mara Block, J.: Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Ind. Crops Prod. 52, 552–561 (2014). https://doi.org/10.1016/j.indcrop.2013.11.031

    Article  Google Scholar 

  14. do Prado, A.C.P., Monalise Aragão, A., Fett, R., Block, J.M.: Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] Shell Infusion. Grasas Aceites. 60, 330–335 (2009). https://doi.org/10.3989/gya.107708

    Article  Google Scholar 

  15. Villarreal-Lozoya, J.E., Lombardini, L., Cisneros-Zevallos, L.: Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem. 102, 1241–1249 (2007). https://doi.org/10.1016/j.foodchem.2006.07.024

    Article  Google Scholar 

  16. Molina-Quijada, D.M.A., Medina-Juárez, L.A., González-Aguilar, G.A., Robles-Sánchez, R.M., Gámez-Meza, N.: Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en el noroeste de México. CyTA J. Food. 8, 57–63 (2010). https://doi.org/10.1080/19476330903146021

    Article  Google Scholar 

  17. Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates andantioxidants by means of folin - ciocalteu reagent. Methods Enzym. 299, 152–178 (1999). https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  18. Siddhuraju, P., Becker, K.: Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 51, 2144–2155 (2003). https://doi.org/10.1021/jf020444

    Article  Google Scholar 

  19. Materska, M., Perucka, I.: Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 53, 1750–1756 (2005). https://doi.org/10.1021/jf035331k

    Article  Google Scholar 

  20. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  21. Dah, D., Adoukonou, H., Diarrassouba, N., Sina, H., Adjanohoun, A., Inoussa, M., Akakpo, D., Gbenou, J.D., Kotchoni, S.O., Dicko, M.H., Baba, L.: Phytochemical analysis and biological activities of cola nitida bark. Biochem. Res. Int. 20, 15 (2015). https://doi.org/10.1155/2015/493879

    Article  Google Scholar 

  22. CLSI: Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. Clin. Lab. Stand. Inst. 32, 1–188 (2014)

    Google Scholar 

  23. Franco, L.A., Matiz, G.E., Pájaro, I.B., Gómez, H.A.: Actividad antibacteriana in vitro de extractos y fracciones de Physalis peruviana L. y Caesalpinia pulcherrima (L.) Swartz. Bol. Latinoam. Caribe Plant. Med. Aromat. 12, 230–237 (2013)

    Google Scholar 

  24. Fernández-Agulló, A., Pereira, E., Freire, M.S., Valentão, P., Andrade, P.B., González-álvarez, J., Pereira, J.A.: Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 42, 126–132 (2013). https://doi.org/10.1016/j.indcrop.2012.05.021

    Article  Google Scholar 

  25. Akbari, V., Jamei, R., Heidari, R., Esfahlan, A.J.: Antiradical activity of different parts of walnut (Juglans regia L.) fruit as a function of genotype. Food Chem. 135, 2404–2410 (2012). https://doi.org/10.1016/j.foodchem.2012.07.030

    Article  Google Scholar 

  26. Rascon, L.A., Jimenez Estrada, M., Velazquez Contreras, C.A., Garibay Escobar, A., Medina Juarez, L.A., Gamez Meza, N., Robles Zepeda, R.E.: Antiproliferative and apoptotic activities of extracts of Asclepias subulata. Pharm. Biol. 0209, 1–11 (2015). https://doi.org/10.3109/13880209.2015.1005752

    Article  Google Scholar 

  27. Torres, M.H., Velazquez, C.A., Garibay-Escobar, A., Curini, M., Marcotullio, M.C., Robles-Zepeda, R.E.: Antiproliferative and apoptosis induction of cucurbitacin-type triterpenes from Ibervillea sonorae. Ind. Crops Prod. 77, 895–900 (2015). https://doi.org/10.1016/j.indcrop.2015.09.055

    Article  Google Scholar 

  28. Stagos, D., Amoutzias, G.D., Matakos, A., Spyrou, A., Tsatsakis, A.M., Kouretas, D.: Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol. 50, 2155–2170 (2012). https://doi.org/10.1016/j.fct.2012.04.002

    Article  Google Scholar 

  29. Yang, J., Liu, R.H., Halim, L.: Antioxidant and antiproliferative activities of common edible nut seeds. LWT Food Sci. Technol. 42, 1–8 (2009). https://doi.org/10.1016/j.lwt.2008.07.007

    Article  Google Scholar 

  30. Kim, Y.J., Park, H.J., Yoon, S.H., Kim, M.J., Leem, K.H., Chung, J.H., Kim, H.K.: Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4. World J. Gastroenterol. 11, 4674–4678 (2005). https://doi.org/10.3748/wjg.v11.i30.4674

    Article  Google Scholar 

  31. Caxambú, S., Biondo, E., Kolchinski, E.M., Padilha, R.L., Brandelli, A., Anna, V.S.: Evaluation of the antimicrobial activity of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell aqueous extract on minimally processed lettuce leaves. Food Sci. Technol. 5, 6 (2016). https://doi.org/10.1590/1678-457X.0043

    Article  Google Scholar 

  32. Oliveira, I., Sousa, A., Ferreira, I.C.F.R., Bento, A., Estevinho, L., Pereira, J.A.: Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 46, 2326–2331 (2008). https://doi.org/10.1016/j.fct.2008.03.017

    Article  Google Scholar 

  33. Orue, N., García, S., Feng, P., Heredia, N.: Decontamination of Salmonella, Shigella, and Escherichia coli O157: H7 from leafy green vegetables using edible plant extracts. J. Food Sci. (2013). https://doi.org/10.1111/1750-3841.12016

    Article  Google Scholar 

  34. Chabi, S.K., Sina, H., Adoukonou-Sagbadja, H., Ahoton, L.E., Roko, G.O., Saidou, A., Adéoti, K., Ahanchede, A., Baba-Moussa, L.: Antimicrobial activity of Anacardium occidentale L. leaves and barks extracts on pathogenic bacteria. Afr. J. Microbiol. Res. 8, 2458–2467 (2014). https://doi.org/10.5897/ajmr2014.6859

    Article  Google Scholar 

  35. Cruz, D., Verde, M.J., Salinas, N.R., Rosales, B., Estrada, I., Mendez, P., Carranza, P., Gonzalez, M., Castro, J.: Antimycobacterial activity of Juglans regia, Juglans mollis, Carya illinoensis and Bocconia frutescens. Phyther. Res. 22, 557–559 (2008). https://doi.org/10.1002/ptr

    Article  Google Scholar 

  36. Obey, J., Swamy, A.: Antibacterial activity of methanolic extracts of Cola nitida seeds on selected pathogenic organisms. Int. J. Curr. Microbiol. Appl. Sci. 3, 999–1009 (2014)

    Google Scholar 

  37. Xiong, J., Li, S., Wang, W., Hong, Y., Tang, K., Luo, Q.: Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chem. 138, 327–333 (2013). https://doi.org/10.1016/j.foodchem.2012.10.127

    Article  Google Scholar 

  38. Borges, A., Ferreira, C., Saavedra, M.J., Simões, M.: Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. (2013). https://doi.org/10.1089/mdr.2012.0244

    Article  Google Scholar 

  39. Betts, J.W., Sharili, A.S., Phee, L.M., Wareham, D.W.: In vitro activity of epigallocatechin gallate and quercetin alone and in combination versus clinical isolates of methicillin-resistant Staphylococcus aureus. J. Nat. Prod. 78, 2145–2148 (2015). https://doi.org/10.1021/acs.jnatprod.5b00471

    Article  Google Scholar 

  40. Mayer, R., Stecher, G., Wuerzer, R., Colonia Silva, R., Sultana, T., Trojer, L., Feuerstein, I., Krieg, C., Abel, G., Popp, M., Bobleter, O., Karl Bonn, G.: Proanthocyanidins: target compounds as antibacterial agents. J. Agric. Food Chem. 56, 6959–6966 (2008). https://doi.org/10.1021/jf800832r

    Article  Google Scholar 

  41. Tang, C., Xie, B., Sun, Z.: Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. J. Funct. Foods 38, 454–463 (2017). https://doi.org/10.1016/j.jff.2017.09.046

    Article  Google Scholar 

  42. Li, X., He, C., Song, L., Li, T., Cui, S., Zhang, L., Jia, Y.: Antimicrobial activity and mechanism of Larch bark procyanidins against Staphylococcus aureus. Acta Biochim. Biophys. Sin. 49, 1058–1066 (2017). https://doi.org/10.1093/abbs/gmx112

    Article  Google Scholar 

  43. John, J.A., Shahidi, F.: Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2, 196–209 (2010). https://doi.org/10.1016/j.jff.2010.04.008

    Article  Google Scholar 

  44. Gültekin-Özgüven, M., Davarcı, F., Paslı, A.A., Demir, N., Özçelik, B.: Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: applications in nuts. LWT Food Sci. Technol. 64, 42–49 (2015). https://doi.org/10.1016/j.lwt.2015.05.014

    Article  Google Scholar 

  45. Mena, P., Calani, L., DallAsta, C., Galaverna, G., García-Viguera, C., Bruni, R., Crozier, A., DelRio, D.: Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 17, 14821–14840 (2012). https://doi.org/10.3390/molecules171214821

    Article  Google Scholar 

  46. García-ruiz, A., Girones-vilaplana, A., León, P., Moreno, D.A., Stinco, C.M., Meléndez-martínez, A.J., Ruales, J.: Banana passion fruit (Passiflora mollissima (Kunth) L.H. Bailey): microencapsulation, phytochemical composition and antioxidant capacity. Molecules 22, 1–12 (2017). https://doi.org/10.3390/molecules22010085

    Article  Google Scholar 

  47. Robbins, K.S., Gong, Y., Wells, M.L., Greenspan, P., Pegg, R.B.: Reprint of “Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans”. J. Funct. Foods. 18, 1002–1013 (2015). https://doi.org/10.1016/j.jff.2015.05.026

    Article  Google Scholar 

  48. Ye, M., Yang, W.Z., Liu, K.Di, Qiao, X., Li, B.J., Cheng, J., Feng, J., Guo, D.A., Zhao, Y.Y.: Characterization of flavonoids in Millettia nitida var hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2, 35–42 (2012). https://doi.org/10.1016/j.jpha.2011.09.009

    Article  Google Scholar 

  49. Sun, J., Liang, F., Bin, Y., Li, P., Duan, C.: Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 12, 679–693 (2007). https://doi.org/10.3390/12030679

    Article  Google Scholar 

  50. Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B., Periago, M.J.: Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16, 805–822 (2015). https://doi.org/10.3390/ijms16010805

    Article  Google Scholar 

  51. Ojwang, L.O., Yang, L., Dykes, L., Awika, J.: Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 139, 35–43 (2013). https://doi.org/10.1016/j.foodchem.2013.01.117

    Article  Google Scholar 

  52. Zhao, M.H., Jiang, Z.T., Liu, T., Li, R.: Flavonoids in Juglans regia L. leaves and evaluation of in vitro antioxidant activity via intracellular and chemical methods. Sci. World J. (2014)

  53. Tala, V.R.S., Da Silva, V.C., Rodrigues, C.M., Nkengfack, A.E., Dos Santos, L.C., Vilegas, W.: Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by flow injection analysis: electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 18, 2803–2820 (2013). https://doi.org/10.3390/molecules18032803

    Article  Google Scholar 

  54. Verardo, V., Bonoli, M., Marconi, E., Caboni, M.F.: Determination of free Flavan-3-ol content in barley (Hordeum vulgare L.) air-classified flours: comparative study of HPLC-DAD/MS and spectrophotometric determinations. J. Agric. Food Chem. 56, 6944–6948 (2008)

    Article  Google Scholar 

  55. Ibrahim, L.F., Elkhateeb, A., Marzouk, M.M., Hussein, S.R., Kassem, M.E.S.: Flavonoid investigation, LC–ESI-MS profile and cytotoxic activity of Raphanus raphanistrum L. (Brassicaceae). J. Chem. Pharm. Res. 8, 786–793 (2016)

    Google Scholar 

  56. Brito, A., Ramirez, J.E., Areche, C., Sepúlveda, B., Simirgiotis, M.J.: HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421 (2014). https://doi.org/10.3390/molecules191117400

    Article  Google Scholar 

  57. Saldanha, L.L., Vilegas, W., Dokkedal, A.L.: Characterization of flavonoids and phenolic acids in Myrcia bella cambess using FIA-ESI-IT-MSnand HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 18, 8402–8416 (2013). https://doi.org/10.3390/molecules18078402

    Article  Google Scholar 

  58. Kammerer, D., Claus, A., Carle, R., Schieber, A.: Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 52, 4360–4367 (2004). https://doi.org/10.1021/jf049613b

    Article  Google Scholar 

  59. Li, Z., Guo, H., Xu, W., Ge, J., Li, X., Alimu, M., He, D.: Rapid identification of flavonoid constituents directly from PTP1B inhibitive extract of raspberry (Rubus idaeus L.) leaves by HPLC–ESI–QTOF–MS–MS. J. Chromatogr. Sci. 54, 805–810 (2016). https://doi.org/10.1093/chromsci/bmw016

    Article  Google Scholar 

  60. Doerge, D.R., Chang, H.C., Churchwell, M.I., Holder, L.: Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab. Dispos. 28, 298–307 (1999)

    Google Scholar 

  61. Robbins, K.S., Ma, Y., Wells, M.L., Greenspan, P., Pegg, R.B.: Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 62, 4332–4341 (2014). https://doi.org/10.1021/jf500909h

    Article  Google Scholar 

  62. Abdel-Hameed, E.-S.S., Bazaid, S.A., Mahmood, S.S.: Characterization of the phytochemical constituents of taif rose and its antioxidant and anticancer activities. Biomed Res. Int. 1, 3 (2013). https://doi.org/10.1155/2013/345465

    Article  Google Scholar 

  63. Zanutto, F.V., Boldrin, P.K., Varanda, E.A., De Souza, S.F., Sano, P.T., Vilegas, W., Dos Santos, L.C.: Characterization of flavonoids and naphthopyranones in methanol extracts of Paepalanthus chiquitensis herzog by HPLC-ESI-IT-MSnand their mutagenic activity. Molecules 18, 244–262 (2013). https://doi.org/10.3390/molecules18010244

    Article  Google Scholar 

Download references

Acknowledgements

The authors to thank Grupo Alta S.A. de C.V. (www.grupoalta.com) for providing the pecan nut, Consejo Nacional de Ciencia y Tecnologia of Mexico for the fellowship for the first author. Authors also to thank Ph.D. Kristin Whitney, who provided help with language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nohemí Gámez-Meza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Estrada, R.A., Gámez-Meza, N., Medina-Juárez, L.A. et al. Chemical Composition, Antioxidant, Antimicrobial and Antiproliferative Activities of Wastes from Pecan Nut [Carya illinoinensis (Wagenh) K. Koch]. Waste Biomass Valor 11, 3419–3432 (2020). https://doi.org/10.1007/s12649-019-00681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00681-2

Keywords

Navigation