Skip to main content

Advertisement

Log in

Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Currently, the use of energy from fossil fuels is generating serious environmental issues. On the other hand, a large amount of agro-industrial residues is produced without any specific use in Colombia. Nevertheless, potential applications related to the biomass upgrading into energy vectors has been encouraged in this country considering the biogas as a potential biofuel derived from agricultural wastes. Therefore, this work evaluates the simulation of the biogas production process from plantain pseudostem. For this, three scenarios have been proposed and simulated using the Aspen Plus Software. The first scenario only includes the plantain pseudostem anaerobic degradation without a pretreatment and biogas purification stages. The second scenario involves the acid pretreatment of the raw material and the biogas production using as substrate the mix between a xylose rich liquor and the acid pretreated solid. Instead, the third scenario includes an acid pretreatment stage and a biogas purification technology. The results show that the plantain pseudostem is a promising raw material to produce biogas. The application of the dilute acid pretreatment to the raw material allows increasing the methane yields. Moreover, the implementation of both pretreatment and methane concentration stages results in higher production costs. Nevertheless, the third scenario shown better performances since it has lower content of carbon dioxide. As conclusion, the biogas produced from renewable sources has a great potential to be used as biofuel and energy source for electricity generation in rural areas of Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moncada, J., Aristizábal, V., Cardona, C.A.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016)

    Article  Google Scholar 

  2. Seadi, T.A., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. (2008)

  3. Cardona Alzate, C.A., Solarte-Toro, J.C., Peña, ÁG.: Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catal. Today. 302, 61–72 (2018). https://doi.org/10.1016/j.cattod.2017.09.034

    Article  Google Scholar 

  4. Renewable energy policy network for the 21st century (REN21).: Renewables 2017 global status report. Paris Renew. energy policy Netw. 21st Century. 325 (2018)

  5. Tiwari, G., Mishra, R.: Advanced Renewable Energy Sources. Royal Society of Chemestry, London (2012)

    Google Scholar 

  6. Koizumi, T.: Biofuels and Food Security: Biofuel Impact on Food Security in Brazil, Asia and Major Producing Countries. Springer, New York (2014)

    Book  Google Scholar 

  7. Alonso, D.M., Bond, J.Q., Dumesic, J.A.: Catalytic conversion of biomass to biofuels. Green Chem. 12, 1493–1513 (2010). https://doi.org/10.1039/c004654j

    Article  Google Scholar 

  8. Jouzani, G., Taherzadeh, M.: Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res. J. 5, 152–195 (2015). https://doi.org/10.18331/BRJ2015.2.1.4

    Article  Google Scholar 

  9. Claassen, P.A., van Lier, J.B., Contreras, A.L., van Niel, E.M., Sijtsma, L., Stams, A.J., de Vries, S.S., Weusthuis, R.A.: Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52, 741–755 (1999). https://doi.org/10.1007/s002530051586

    Article  Google Scholar 

  10. Demirbas, A.: Biofuels securing the planet’s future energy needs. Energy Convers. Manag. 50, 2239–2249 (2009). https://doi.org/10.1016/j.enconman.2009.05.010

    Article  Google Scholar 

  11. Mohsin, R., Majid, Z.A., Shihnan, A.H., Nasri, N.S., Sharer, Z.: Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Convers. Manag. 88, 821–828 (2014). https://doi.org/10.1016/j.enconman.2014.09.027

    Article  Google Scholar 

  12. Raposo, F., De La Rubia, M.A., Fernandez-Cegr, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 16, 861–877 (2012). https://doi.org/10.1016/j.rser.2011.09.008

    Article  Google Scholar 

  13. Goyal, H.B., Seal, D., Saxena, R.C.: Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12, 504–517 (2008). https://doi.org/10.1016/j.rser.2006.07.014

    Article  Google Scholar 

  14. Deremince, B., Königsberger, S.: Statistical Report of the European Biogas Association 2017. (2017)

  15. EPA: Managing Manure with Biogas Recovery Systems—Improved Performance at Competitive Costs, The AgSTAR Program. (2002)

  16. Surendra, K.C., Takara, D., Hashimoto, A.G., Khanal, S.K.: Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew. Sustain. Energy Rev. 31, 846–859 (2014). https://doi.org/10.1016/j.rser.2013.12.015

    Article  Google Scholar 

  17. Beil, M., Beyrich, W.: Biogas upgrading to biomethane. In: The Biogas Handbook. pp. 342–377 (2013)

  18. Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction. Wiley, New York (2010)

    Book  Google Scholar 

  19. Solarte-Toro, J.C., Chacón-Pérez, Y., Cardona-Alzate, C.A.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018). https://doi.org/10.1016/j.ejbt.2018.03.005

    Article  Google Scholar 

  20. Kratzeisen, M., Starcevic, N., Martinov, M., Maurer, C., Müller, J.: Applicability of biogas digestate as solid fuel. Fuel. 89, 2544–2548 (2010). https://doi.org/10.1016/j.fuel.2010.02.008

    Article  Google Scholar 

  21. Ehmann, A., Bach, I.-M., Bilbao, J., Lewandowski, I., Müller, T.: Phosphates recycled from semi-liquid manure and digestate are suitable alternative fertilizers for ornamentals. Sci. Hortic. (Amsterdam). 243, 440–450 (2019). https://doi.org/10.1016/J.SCIENTA.2018.08.052

    Article  Google Scholar 

  22. Taherdanak, M., Zilouei, H., Karimi, K.: The influence of dilute sulfuric acid pretreatment on biogas production form wheat plant. Int. J. Green Energy. 13, 1129–1134 (2016). https://doi.org/10.1080/15435075.2016.1175356

    Article  Google Scholar 

  23. Sarto, S., Hildayati, R., Syaichurrozi, I.: Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew. Energy. 132, 335–350 (2019). https://doi.org/10.1016/J.RENENE.2018.07.121

    Article  Google Scholar 

  24. Hoon-Jung, Y., Heon-Kim, K.: Acidic pretreatment. In: Pretreatment of Biomass: Processes and Technologies. pp. 27–50 (2015)

  25. Ferreira, L.C., Donoso-Bravo, A., Nilsen, P.J., Fdz-Polanco, F., Perez-Elvira, S.I.: Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour. Technol. 143, 251–257 (2013). https://doi.org/10.1016/j.biortech.2013.05.065

    Article  Google Scholar 

  26. Li, Y., Zhang, R., Liu, X., Chen, C., Xiao, X., Feng, L., He, Y., Liu, G.: Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy and Fuels. 27, 2085–2091 (2013). https://doi.org/10.1021/ef400117f

    Article  Google Scholar 

  27. Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., Stinner, W.: Biogas production from sugarcane waste: assessment on kinetic challenges for process Designing. Int. J. Mol. Sci. 16, 20685–20703 (2015). https://doi.org/10.3390/ijms160920685

    Article  Google Scholar 

  28. Carrillo Nieves, D., Karimi, K., Sárvári Horváth, I.: Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Ind. Crops Prod. 34, 1097–1101 (2011). https://doi.org/10.1016/J.INDCROP.2011.03.022

    Article  Google Scholar 

  29. Frigon, J.C., Mehta, P., Guiot, S.R.: Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy. 36, 1–11 (2012). https://doi.org/10.1016/j.biombioe.2011.02.013

    Article  Google Scholar 

  30. Song, Z., Yang, G., Guo, Y., Zhang, T.: Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 7, 3223–3236 (2012). https://doi.org/10.15376/biores.7.3.3223-3236

    Article  Google Scholar 

  31. Gis, W., Samson-bręk, I.: Review of technology for cleaning biogas to natural gas quality. Automot. Ind. Inst. PIMOT. 2012, 33–39 (2012)

  32. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015). https://doi.org/10.1016/j.rser.2015.06.029

    Article  Google Scholar 

  33. Cozma, P., Wukovits, W., Mămăligă, I., Friedl, A., Gavrilescu, M.: Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technol. Environ. Policy. 17, 373–391 (2015). https://doi.org/10.1007/s10098-014-0787-7

    Article  Google Scholar 

  34. Yong, A.S.H., Ihsan, S.I.: Simulation study for economic analysis of biogas production from agricultural biomass. Energy Procedia. 65, 204–214 (2015). https://doi.org/10.1016/J.EGYPRO.2015.01.026

    Article  Google Scholar 

  35. Bala, B.K.: System dynamics modelling and simulation of biogas production systems. Renew. Energy. 1, 723–728 (1991). https://doi.org/10.1016/0960-1481(91)90019-L

    Article  Google Scholar 

  36. Panesso, A.F., Cadena, J.A., Mora, J.J., del Ordoñez, M.C.: Análisis Del Biogás Captado En Un Relleno Sanitario Como Combustible Primario Para La Generación De Energía Eléctrica. Ide@s CONCYTEG. 88, 1170–1182 (2012)

    Google Scholar 

  37. Meneses-Jácome, A., Osorio-Molina, A., Parra-Saldívar, R., Gallego-Suárez, D., Velásquez-Arredondo, H.I., Ruiz-Colorado, A.A.: LCA applied to elucidate opportunities for biogas from wastewaters in Colombia. Water Sci. Technol. 71, 211–219 (2015). https://doi.org/10.2166/wst.2014.477

    Article  Google Scholar 

  38. Quintero, M., Castro, L., Ortiz, C., Guzmán, C., Escalante, H.: Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour. Technol. 108, 8–13 (2012). https://doi.org/10.1016/j.biortech.2011.12.052

    Article  Google Scholar 

  39. Nabarlatz, D., Arenas, L., Herrera, D., Niño, D.: Biogas production by anaerobic digestion of wastewater from palm oil mill industry. Ciencia, Tecnol. y Futur. 5, 73–84 (2013)

    Article  Google Scholar 

  40. Yepes, S.M., Montoya, L.J., Orozco, F.: Valorización de residuos agroindustrales—Frutas—en medellín y el Sur del Valle de Aburrá. Colombia. Rev. Fac. Nal. Agr. Medellín. 61, 4422–4431 (2008)

    Google Scholar 

  41. Guevara, C.A., Arenas, H.A., Mejía, A., Peláez, C.A.: Obtención de etanol y biogás a partir de banano de rechazo. Inf. Tecnol. 23, 19–30 (2012). https://doi.org/10.4067/S0718-07642012000200004

    Article  Google Scholar 

  42. Serna, L.D., Toro, J.S., Loaiza, S.S., Perez, Y.C., Alzate, C.C.: Agricultural waste management through energy producing biorefineries: the colombian case. Waste Biomass Valorization. 1–10 (2016). https://doi.org/10.1007/s12649-016-9576-3

  43. Oficina de Estudios Económicos, Ministerio de Comercio Industria y Turismo de Colombia: Perfil económico por departamento., Manizales: (2017)

  44. Ministerio de: Comercio Industria y Turismo de Colombia: Perfiles económicos por departamentos

  45. Pérez, R.: Roots, tubers, bananas and plantains. In: Speedy, A.W. (ed.) Fedding Pigs in the Tropics. FAO, Rome (1997)

    Google Scholar 

  46. López, J.A., Trejos, V.M., Cardona, C.A.: Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n-alkanols. Fluid Phase Equilib. 275, 1–7 (2009). https://doi.org/10.1016/j.fluid.2008.09.013

    Article  Google Scholar 

  47. Gabhane, J., William, S.P., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S.: Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 34, 498–503 (2014). https://doi.org/10.1016/j.wasman.2013.10.013

    Article  Google Scholar 

  48. Morales-Rodriguez, R., Gernaey, K.V., Meyer, A.S., Sin, G.: A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chin. J. Chem. Eng. 19, 185–191 (2011). https://doi.org/10.1016/S1004-9541(11)60152-3

    Article  Google Scholar 

  49. Achinas, S., Jan, G., Euverink, W.: Theoretical analysis of biogas potential prediction from agricultural waste. Resour. Technol. 2(3): 1–5 (2016). https://doi.org/10.1016/j.reffit.2016.08.001

    Article  Google Scholar 

  50. Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L.: Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour. Technol. 149, 353–358 (2013). https://doi.org/10.1016/j.biortech.2013.09.070

    Article  Google Scholar 

  51. Saha, N., Nagori, C.: Delignification of banana stem enhanceds biogas production. Sardar Patel Renew. Energy Res. Inst. 51 (2002)

  52. ICIS: Icis princing

  53. Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., Cardona, C.A.: Production of bioethanol using Chlorella vulgaris cake: a techno- economic and environmental assessment in the Colombian context Production of bioethanol using Chlorella vulgaris cake : a techno-economic and environmental assessment in the Colombian cont. (2013)

  54. Young, D., Scharp, R., Cabezas, H.: The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Manag. 20, 605–615 (2000). https://doi.org/10.1016/S0956-053X(00)00047-7

    Article  Google Scholar 

  55. Nakamura, Y., Mtui, G.: Anaerobic fermentation of woddy biomass treated by various methods. Biotechnol. Bioprocess Eng. 8, 179–182 (2003)

    Article  Google Scholar 

  56. Panagiotou, G., Olsson, L.: Effect of compound released during preteatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96, 250–258 (2007). https://doi.org/10.1002/bit

    Article  Google Scholar 

  57. Food and Agriculture Organization of the United Nations (FAO): Energy end use options module: Heating and cooking sub-module, biogas community. In: BEFS RA: User manual volumes. pp. 1–40 (2010)

  58. Serna-Loaiza, S., Carmona-Garcia, E., Cardona, C.A.: Potential raw materials for biorefineries to ensure food security: the Cocoyam case. Ind. Crops Prod. 126, 92–102 (2018). https://doi.org/10.1016/j.indcrop.2018.10.005

    Article  Google Scholar 

  59. García, C.A., Moncada, J., Aristizábal, V., Cardona, C.A.: Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems case. Int. J. Hydrogen Energy. 42, 5849–5864 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ariel Cardona-Alzate.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Ramírez, D., Solarte-Toro, J.C. & Cardona-Alzate, C.A. Techno-Economic and Environmental Analysis of Biogas Production from Plantain Pseudostem Waste in Colombia. Waste Biomass Valor 11, 3161–3171 (2020). https://doi.org/10.1007/s12649-019-00643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00643-8

Keywords

Navigation