Skip to main content

Advertisement

Log in

Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Electrochemical charge storage of physically and chemically activated carbon synthesized from oil palm kernel shell (PKS) in three different aqueous electrolytes (1 M H2SO4, 1 M Na2SO4 and 6 M KOH) are presented. Coin type CR2032 cells fabricated using the PKS ACs electrodes separated by fiber glass separator and electrolyte are used as devices for measurements. Achievable operating potential for these devices varied as H2SO4 (1.0 V) < KOH (1.2 V) < Na2SO4 (2.0 V). The highest energy density was obtained in Na2SO4 electrolyte (7.4 Wh kg−1) at a power density of 300 W kg−1. The device stability cycle at low current density (0.5 A g−1) for 3500 times showed capacitance retention in range of 78–114% in all devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  Google Scholar 

  2. Arvind, D., Hegde, G.: Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications: a review. RSC Adv. 5, 88339–88352 (2015). https://doi.org/10.1039/C5RA19392C

    Article  Google Scholar 

  3. Jose, R., Krishnan, S.G., Vidyadharan, B., Misnon, I.I., Harilal, M., Aziz, R.A., Ismail, J., Yusoff, M.M.: Supercapacitor electrodes delivering high energy and power densities. Mater. Today Proc. 3, S48–S56 (2016). https://doi.org/10.1016/j.matpr.2016.01.007

    Article  Google Scholar 

  4. Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., Yi, B.: High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56, 146–154 (2013). https://doi.org/10.1016/j.carbon.2012.12.085

    Article  Google Scholar 

  5. Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., Xue, Q.: Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl. Mater. Interfaces 4, 5800–5806 (2012). https://doi.org/10.1021/am302077c

    Article  Google Scholar 

  6. Teo, E.Y.L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A.R., Jose, R., Chong, K.F.: High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta 192, 110–119 (2016). https://doi.org/10.1016/j.electacta.2016.01.140

    Article  Google Scholar 

  7. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., Moreno-Castilla, C.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012). https://doi.org/10.1016/j.biortech.2012.02.010

    Article  Google Scholar 

  8. Arie, A.A., Kristianto, H., Halim, M., Lee, J.K.: Synthesis and modification of activated carbon originated from Indonesian local orange peel for lithium ion capacitor’s cathode. J. Solid State Electrochem. (2016). https://doi.org/10.1007/s10008-016-3445-7

    Google Scholar 

  9. Misnon, I.I., Zain, N.K.M., Aziz, R.A., Vidyadharan, B., Jose, R.: Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 174, 78–86 (2015). https://doi.org/10.1016/j.electacta.2015.05.163

    Article  Google Scholar 

  10. Lee, S.G., Park, K.H., Shim, W.G., balathanigaimani, M.S., Moon, H.: Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J. Ind. Eng. Chem. 17, 450–454 (2011). https://doi.org/10.1016/j.jiec.2010.10.025

    Article  Google Scholar 

  11. Choi, J., Kim, N.R., Jin, H.-J., Yun, Y.S.: Nanoporous pyropolymer nanosheets fabricated from renewable bio-resources for supercapacitors. J. Ind. Eng. Chem. 43, 158–163 (2016). https://doi.org/10.1016/j.jiec.2016.08.002

    Article  Google Scholar 

  12. Adinaveen, T., Kennedy, L.J., Vijaya, J.J., Sekaran, G.: Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse. J. Ind. Eng. Chem. 19, 1470–1476 (2013). https://doi.org/10.1016/j.jiec.2013.01.010

    Article  Google Scholar 

  13. Shrestha, L.K., Adhikari, L., Shrestha, R.G., Adhikari, M.P., Adhikari, R., Hill, J.P., Pradhananga, R.R., Ariga, K.: Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination. Sci. Technol. Adv. Mater. 17, 483–492 (2016). https://doi.org/10.1080/14686996.2016.1219971

    Article  Google Scholar 

  14. Adhikari, M.P., Adhikari, R., Shrestha, R.G., Rajendran, R., Adhikari, L., Bairi, P., Pradhananga, R.R., Shrestha, L.K., Ariga, K.: Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance. Bull. Chem. Soc. Jpn. 88, 1108–1115 (2015). https://doi.org/10.1246/bcsj.20150092

    Article  Google Scholar 

  15. Zhang, J., Gong, L., Sun, K., Jiang, J., Zhang, X.: Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J. Solid State Electrochem. 16, 2179–2186 (2012). https://doi.org/10.1007/s10008-012-1639-1

    Article  Google Scholar 

  16. Lim, W.C., Srinivasakannan, C., Balasubramanian, N.: Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis 88, 181–186 (2010). https://doi.org/10.1016/j.jaap.2010.04.004

    Article  Google Scholar 

  17. Agensi Inovasi Malaysia: National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Biomass Industry. Agensi Inovasi Malaysia, Selangor (2013)

    Google Scholar 

  18. Huang, C.-C., Chen, Y.-Z.: Electrochemical performance of supercapacitors with KOH activated mesophase carbon microbead electrodes. J. Taiwan Inst. Chem. Eng. 44, 611–616 (2013). https://doi.org/10.1016/j.jtice.2012.12.017

    Article  Google Scholar 

  19. Biswal, M., Banerjee, A., Deo, M., Ogale, S.: From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249 (2013). https://doi.org/10.1039/c3ee22325f

    Article  Google Scholar 

  20. Zheng, J., Zhao, Q., Ye, Z.: Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl. Surf. Sci. 299, 86–91 (2014). https://doi.org/10.1016/j.apsusc.2014.01.190

    Article  Google Scholar 

  21. Wu, X.-L., Wen, T., Guo, H.-L., Yang, S., Wang, X., Xu, A.-W.: Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7, 3589–3597 (2013). https://doi.org/10.1021/nn400566d

    Article  Google Scholar 

  22. Demarconnay, L., Raymundo-Piñero, E., Béguin, F.: A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 12, 1275–1278 (2010). https://doi.org/10.1016/j.elecom.2010.06.036

    Article  Google Scholar 

  23. Qu, Q.T., Wang, B., Yang, L.C., Shi, Y., Tian, S., Wu, Y.P.: Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem. Commun. 10, 1652–1655 (2008). https://doi.org/10.1016/j.elecom.2008.08.020

    Article  Google Scholar 

  24. Zhang, X., Wang, X., Jiang, L., Wu, H., Wu, C., Su, J.: Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J. Power Sources 216, 290–296 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.090

    Article  Google Scholar 

  25. Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M., Bauer, J.: Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51, 40–47 (2006). https://doi.org/10.1016/j.seppur.2005.12.020

    Article  Google Scholar 

  26. Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012). https://doi.org/10.1016/j.seppur.2011.10.033

    Article  Google Scholar 

  27. Xu, C., Wei, C., Li, B., Kang, F., Guan, Z.: Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. J. Power Sources 196, 7854–7859 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.052

    Article  Google Scholar 

  28. Lufrano, F., Staiti, P., Calvo, E.G., Juárez-Pérez, E.J., Menéndez, J.A., Arenillas, A.: Carbon xerogel and manganese oxide capacitive materials for advanced supercapacitors. Int. J. Electrochem. Sci. 6, 596–612 (2011)

    Google Scholar 

  29. Malak-Polaczyk, A., Matei-Ghimbeu, C., Vix-Guterl, C., Frackowiak, E.: Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 183, 969–974 (2010). https://doi.org/10.1016/j.jssc.2010.02.015

    Article  Google Scholar 

  30. Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., Fu, J.: Three-dimensional activated carbon recycled from rotten potatoes for high-performance supercapacitors. Waste Biomass Valoriz. 7, 551–557 (2015). https://doi.org/10.1007/s12649-015-9458-0

    Article  Google Scholar 

  31. Wu, M., Li, R., He, X., Zhang, H., Sui, W., Tan, M.: Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors. New Carbon Mater. 30, 86–91 (2015). https://doi.org/10.1016/S1872-5805(15)60178-0

    Article  Google Scholar 

  32. Ma, F., Wan, J., Wu, G., Zhao, H.: Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Adv. 5, 44416–44422 (2015). https://doi.org/10.1039/C5RA05090A

    Article  Google Scholar 

  33. Ou, Y., Peng, C., Lang, J., Zhu, D., Yan, X.: Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor. New Carbon Mater. 29, 209–215 (2014). https://doi.org/10.1016/S1872-5805(14)60135-9

    Article  Google Scholar 

  34. Liu, B., Zhou, X., Chen, H., Liu, Y., Li, H.: Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim. Acta 208, 55–63 (2016). https://doi.org/10.1016/j.electacta.2016.05.020

    Article  Google Scholar 

  35. Rufford, T.E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z., Lu, G.Q.: Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources. 195, 912–918 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.048

    Article  Google Scholar 

  36. Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Jiang, K.: Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2014.12.169

    Google Scholar 

  37. Subramanian, V., Luo, C., Stephan, A.M., Nahm, K.S., Thomas, S., Wei, B.: Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111, 7527–7531 (2007). https://doi.org/10.1021/jp067009t

    Article  Google Scholar 

  38. Yu, M., Wang, W., Li, C., Zhai, T., Lu, X., Tong, Y.: Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014). https://doi.org/10.1038/am.2014.78

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UMP Research Grant (RDU150354) and UMP Pre-Commercialization Fund (UIC 160305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Izan Izwan Misnon or Rajan Jose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12970 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misnon, I.I., Zain, N.K.M. & Jose, R. Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application. Waste Biomass Valor 10, 1731–1740 (2019). https://doi.org/10.1007/s12649-018-0196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0196-y

Keywords

Navigation