Waste and Biomass Valorization

, Volume 9, Issue 5, pp 811–820 | Cite as

Enhancement of Heterotrophic Biomass Production by Micractinium sp. ME05

  • Iskin Kose Engin
  • Deniz Cekmecelioglu
  • Ayse Meral Yücel
  • Huseyin Avni Oktem
Original Paper


In this study, heterotrophic growth conditions for Micractinium sp. ME05 cells were investigated for the improvement of biomass production. Plackett Burman (PB) method was used to screen process variables, namely, pH, carbon source and yeast extract concentrations, temperature and inoculum ratio, that affect the biomass production. The Box-Behnken (BB) design of response surface methodology (RSM) was applied to evaluate the interaction effect of process variables and to optimize them. The biomass obtained from PB design was 1.07 g/L and pH, temperature and carbon source concentration were selected based on their positive effect on biomass production. Applying response optimizer tool of RSM, the highest biomass obtained was 2.08 g/L. The results revealed that a 1.9-fold increase in biomass concentration was achieved by manipulating cultivation conditions which would be valuable for large scale cost efficient industrial applications of biomass production.

Graphical Abstract


Micractinium Biomass enhancement Response surface methodology (RSM) Box-Behnken Design (BBD) Molasses. 



We would like to thank to Dr. Melih Onay for his isolation and characterization of microalgal species used in this study. This study was carried out in the following laboratories: Middle East Technical University (METU) Central Laboratory Molecular Biology and Biotechnology R&D Center, METU Biology Department Plant Biotechnology Laboratory and METU Food Engineering Department Bioprocess Laboratory. We would like to thank to TUBITAK Project Number :114Z487 for providing funding to Iskin Kose Engin during this research.


  1. 1.
    Brennan, L., Owende, P.: Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010). doi: 10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  2. 2.
    Suali, E., Sarbatly, R.: Conversion of microalgae to biofuel., Renew. Sustain. Energy Rev. 16, 4316–4342 (2012). doi: 10.1016/j.rser.2012.03.047 CrossRefGoogle Scholar
  3. 3.
    Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y.: Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45, 11–36 (2011). doi: 10.1016/j.watres.2010.08.037 CrossRefGoogle Scholar
  4. 4.
    Rattanapoltee, P., Kaewkannetra, P.: Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl. Biochem. Biotechnol. 173, 1495–1510 (2014). doi: 10.1007/s12010-014-0949-4 CrossRefGoogle Scholar
  5. 5.
    Agwa, O.K., Ibe S.N., Abu, G.O.: Heterotrophic cultivation of Chlorella sp. using different waste extracts. Int. J. Biochem. Biotechnol. 2, 289–297 (2013)Google Scholar
  6. 6.
    Sonmez, C., Elcin, E., Akın, D., Avni, H., Yucel, M.: Bioresource technology evaluation of novel thermo-resistant Micractinium and Scenedesmus sp. for efficient biomass and lipid production under different temperature and nutrient regimes. Bioresour. Technol. 211, 422–428 (2016). doi: 10.1016/j.biortech.2016.03.125 CrossRefGoogle Scholar
  7. 7.
    Chojnacka, K., Marquez-Rocha, F.-J.: Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae. Biotechnology 3, 21–34 (2004). doi: 10.3923/biotech.2004.21.34 CrossRefGoogle Scholar
  8. 8.
    Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G.: Biodiesel production by microalgal biotechnology. Appl. Energy. 87, 38–46 (2010). doi: 10.1016/j.apenergy.2009.06.016 CrossRefGoogle Scholar
  9. 9.
    Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S.: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 102, 71–81 (2011). doi: 10.1016/j.biortech.2010.06.159 CrossRefGoogle Scholar
  10. 10.
    Wen, Z.-Y., Chen, F.: Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21, 273–294 (2003). doi: 10.1016/S0734-9750(03)00051-X CrossRefGoogle Scholar
  11. 11.
    Chen, F.: High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14, 421–426 (1996). doi: 10.1016/0167-7799(96)10060-3 CrossRefGoogle Scholar
  12. 12.
    Liu, J., Sun, Z., Zhong, Y., Gerken, H., Huang, J., Chen, F.: Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J. Appl. Phycol. 25, 1447–1456 (2013). doi: 10.1007/s10811-013-9974-x CrossRefGoogle Scholar
  13. 13.
    Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846 (2006). doi: 10.1016/j.biortech.2005.04.008 CrossRefGoogle Scholar
  14. 14.
    Najafpour, G.D., Poi Shan, C.: Enzymatic hydrolysis of molasses. Bioresour. Technol. 86, 91–94 (2003). doi: 10.1016/S0960-8524(02)00103-7 CrossRefGoogle Scholar
  15. 15.
    Gaurav, K., Srivastava, R., Sharma, J.G., Singh, R., Singh, V.: Molasses based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. Int. J. Green Energy. 5075, 150122092222001 (2015). doi: 10.1080/15435075.2014.966268 Google Scholar
  16. 16.
    Xu, H., Miao, X., Wu, Q.: High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499–507 (2006). doi: 10.1016/j.jbiotec.2006.05.002 CrossRefGoogle Scholar
  17. 17.
    Gao, C., Zhai, Y., Ding, Y., Wu, Q.: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy. 87, 756–761 (2010). doi: 10.1016/j.apenergy.2009.09.006 CrossRefGoogle Scholar
  18. 18.
    Wei, A., Zhang, X., Wei, D., Chen, G., Wu, Q., Yang, S.-T.: Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol. 36, 1383–1389 (2009). doi: 10.1007/s10295-009-0624-x CrossRefGoogle Scholar
  19. 19.
    Kim, W., Park, J.M., Gim, G.H., Jeong, S.-H., Kang, C.M., Kim, D.-J., Kim, S.W.: Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst. Eng. 35, 19–27 (2012). doi: 10.1007/s00449-011-0612-1 CrossRefGoogle Scholar
  20. 20.
    Kirrolia, A., Bishnoi, N.R., Singh, R.: Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. Ann. Microbiol. 64, 1133–1147 (2014). doi: 10.1007/s13213-013-0752-4 CrossRefGoogle Scholar
  21. 21.
    Cheng, Y., Lu, Y., Gao, C., Wu, Q.: Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels. 23, 4166–4173 (2009). doi: 10.1021/ef9003818 CrossRefGoogle Scholar
  22. 22.
    Onay, M., Sonmez, C., Oktem, H.A., Yucel, A.M.: Thermo-resistant green microalgae for effective biodiesel production: Isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour. Technol. 169, 62–71 (2014). doi: 10.1016/j.biortech.2014.06.078 CrossRefGoogle Scholar
  23. 23.
    Gorman, D.S., Levine, R.P.: Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965). doi:  10.1073/pnas.54.6.1665 CrossRefGoogle Scholar
  24. 24.
    Xiong, W., Li, X., Xiang, J., Wu, Q.: High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78, 29–36 (2008). doi: 10.1007/s00253-007-1285-1 CrossRefGoogle Scholar
  25. 25.
    Abou-shanab, R.A., Raghavulu, S.V., Hassanin, N.M., Kim, S., Kim, Y.J., Oh, S.U., Oh, Y., Jeon, B.: Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum, Afr. J. Biotechnol. 11, 16270–16276 (2012). doi: 10.5897/AJB12.2628 CrossRefGoogle Scholar
  26. 26.
    Yan, D., Lu, Y., Chen, Y.F., Wu, Q.: Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102, 6487–6493 (2011). doi: 10.1016/j.biortech.2011.03.036 CrossRefGoogle Scholar
  27. 27.
    Miller, G.L.: Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  28. 28.
    Karpagam, R., Raj, K.J., Ashokkumar, B., Varalakshmi, P.: Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188, 177–184 (2015). doi: 10.1016/j.biortech.2015.01.053 CrossRefGoogle Scholar
  29. 29.
    Uncu, O.N., Cekmecelioglu, D.: Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manag. 31, 636–643 (2011). doi: 10.1016/j.wasman.2010.12.007 CrossRefGoogle Scholar
  30. 30.
    Li, Z., Yuan, H., Yang, J., Li, B.: Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341., Bioresour. Technol. 102, 9128–9134 (2011). doi: 10.1016/j.biortech.2011.07.004 CrossRefGoogle Scholar
  31. 31.
    Gurkok, S., Cekmecelioglu, D., Ogel, Z.B.: Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. Bioresour. Technol. 102, 4925–4929 (2011). doi: 10.1016/j.biortech.2011.01.036 CrossRefGoogle Scholar
  32. 32.
    Lakshmikandan, M., Murugesan, A.G.: Enhancement of growth and biohydrogen production potential of Chlorella vulgaris MSU-AGM 14 by utilizing seaweed aqueous extract of Valoniopsis pachynema. Renew. Energy. 96, 390–399 (2016). doi: 10.1016/j.renene.2016.04.097 CrossRefGoogle Scholar
  33. 33.
    Juneja, A., Ceballos, R., Murthy, G.: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A Review. Energies 6, 4607–4638 (2013). doi: 10.3390/en6094607 CrossRefGoogle Scholar
  34. 34.
    Kanaga, K., Pandey, A., Kumar, S., Geetanjali: Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738., Bioresour. Technol. 200, 940–950 (2016). doi: 10.1016/j.biortech.2015.11.017 CrossRefGoogle Scholar
  35. 35.
    Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14, 217–232 (2010). doi: 10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  36. 36.
    Xiufeng, W.Q. L., Han, X., Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. (2007). doi: 10.1002/bit.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Iskin Kose Engin
    • 1
    • 5
  • Deniz Cekmecelioglu
    • 2
  • Ayse Meral Yücel
    • 1
    • 3
  • Huseyin Avni Oktem
    • 1
    • 3
    • 4
  1. 1.Department of BiotechnologyMiddle East Technical UniversityAnkaraTurkey
  2. 2.Departmenf of Food EngineeringMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  4. 4.Faculty of Agriculture and Natural SciencesKonya Food and Agriculture UniversityKonyaTurkey
  5. 5.Central Laboratory, Molecular Biology and Biotechnology R&D CenterMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations