Skip to main content

Advertisement

Log in

Enhancement of Heterotrophic Biomass Production by Micractinium sp. ME05

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, heterotrophic growth conditions for Micractinium sp. ME05 cells were investigated for the improvement of biomass production. Plackett Burman (PB) method was used to screen process variables, namely, pH, carbon source and yeast extract concentrations, temperature and inoculum ratio, that affect the biomass production. The Box-Behnken (BB) design of response surface methodology (RSM) was applied to evaluate the interaction effect of process variables and to optimize them. The biomass obtained from PB design was 1.07 g/L and pH, temperature and carbon source concentration were selected based on their positive effect on biomass production. Applying response optimizer tool of RSM, the highest biomass obtained was 2.08 g/L. The results revealed that a 1.9-fold increase in biomass concentration was achieved by manipulating cultivation conditions which would be valuable for large scale cost efficient industrial applications of biomass production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brennan, L., Owende, P.: Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010). doi:10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  2. Suali, E., Sarbatly, R.: Conversion of microalgae to biofuel., Renew. Sustain. Energy Rev. 16, 4316–4342 (2012). doi:10.1016/j.rser.2012.03.047

    Article  Google Scholar 

  3. Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y.: Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45, 11–36 (2011). doi:10.1016/j.watres.2010.08.037

    Article  Google Scholar 

  4. Rattanapoltee, P., Kaewkannetra, P.: Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl. Biochem. Biotechnol. 173, 1495–1510 (2014). doi:10.1007/s12010-014-0949-4

    Article  Google Scholar 

  5. Agwa, O.K., Ibe S.N., Abu, G.O.: Heterotrophic cultivation of Chlorella sp. using different waste extracts. Int. J. Biochem. Biotechnol. 2, 289–297 (2013)

    Google Scholar 

  6. Sonmez, C., Elcin, E., Akın, D., Avni, H., Yucel, M.: Bioresource technology evaluation of novel thermo-resistant Micractinium and Scenedesmus sp. for efficient biomass and lipid production under different temperature and nutrient regimes. Bioresour. Technol. 211, 422–428 (2016). doi:10.1016/j.biortech.2016.03.125

    Article  Google Scholar 

  7. Chojnacka, K., Marquez-Rocha, F.-J.: Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae. Biotechnology 3, 21–34 (2004). doi:10.3923/biotech.2004.21.34

    Article  Google Scholar 

  8. Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G.: Biodiesel production by microalgal biotechnology. Appl. Energy. 87, 38–46 (2010). doi:10.1016/j.apenergy.2009.06.016

    Article  Google Scholar 

  9. Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S.: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 102, 71–81 (2011). doi:10.1016/j.biortech.2010.06.159

    Article  Google Scholar 

  10. Wen, Z.-Y., Chen, F.: Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21, 273–294 (2003). doi:10.1016/S0734-9750(03)00051-X

    Article  Google Scholar 

  11. Chen, F.: High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14, 421–426 (1996). doi:10.1016/0167-7799(96)10060-3

    Article  Google Scholar 

  12. Liu, J., Sun, Z., Zhong, Y., Gerken, H., Huang, J., Chen, F.: Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J. Appl. Phycol. 25, 1447–1456 (2013). doi:10.1007/s10811-013-9974-x

    Article  Google Scholar 

  13. Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846 (2006). doi:10.1016/j.biortech.2005.04.008

    Article  Google Scholar 

  14. Najafpour, G.D., Poi Shan, C.: Enzymatic hydrolysis of molasses. Bioresour. Technol. 86, 91–94 (2003). doi:10.1016/S0960-8524(02)00103-7

    Article  Google Scholar 

  15. Gaurav, K., Srivastava, R., Sharma, J.G., Singh, R., Singh, V.: Molasses based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. Int. J. Green Energy. 5075, 150122092222001 (2015). doi:10.1080/15435075.2014.966268

    Google Scholar 

  16. Xu, H., Miao, X., Wu, Q.: High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126, 499–507 (2006). doi:10.1016/j.jbiotec.2006.05.002

    Article  Google Scholar 

  17. Gao, C., Zhai, Y., Ding, Y., Wu, Q.: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy. 87, 756–761 (2010). doi:10.1016/j.apenergy.2009.09.006

    Article  Google Scholar 

  18. Wei, A., Zhang, X., Wei, D., Chen, G., Wu, Q., Yang, S.-T.: Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol. 36, 1383–1389 (2009). doi:10.1007/s10295-009-0624-x

    Article  Google Scholar 

  19. Kim, W., Park, J.M., Gim, G.H., Jeong, S.-H., Kang, C.M., Kim, D.-J., Kim, S.W.: Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst. Eng. 35, 19–27 (2012). doi:10.1007/s00449-011-0612-1

    Article  Google Scholar 

  20. Kirrolia, A., Bishnoi, N.R., Singh, R.: Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. Ann. Microbiol. 64, 1133–1147 (2014). doi:10.1007/s13213-013-0752-4

    Article  Google Scholar 

  21. Cheng, Y., Lu, Y., Gao, C., Wu, Q.: Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels. 23, 4166–4173 (2009). doi:10.1021/ef9003818

    Article  Google Scholar 

  22. Onay, M., Sonmez, C., Oktem, H.A., Yucel, A.M.: Thermo-resistant green microalgae for effective biodiesel production: Isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour. Technol. 169, 62–71 (2014). doi:10.1016/j.biortech.2014.06.078

    Article  Google Scholar 

  23. Gorman, D.S., Levine, R.P.: Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965). doi: 10.1073/pnas.54.6.1665

    Article  Google Scholar 

  24. Xiong, W., Li, X., Xiang, J., Wu, Q.: High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78, 29–36 (2008). doi:10.1007/s00253-007-1285-1

    Article  Google Scholar 

  25. Abou-shanab, R.A., Raghavulu, S.V., Hassanin, N.M., Kim, S., Kim, Y.J., Oh, S.U., Oh, Y., Jeon, B.: Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum, Afr. J. Biotechnol. 11, 16270–16276 (2012). doi:10.5897/AJB12.2628

    Article  Google Scholar 

  26. Yan, D., Lu, Y., Chen, Y.F., Wu, Q.: Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102, 6487–6493 (2011). doi:10.1016/j.biortech.2011.03.036

    Article  Google Scholar 

  27. Miller, G.L.: Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). doi:10.1021/ac60147a030

    Article  Google Scholar 

  28. Karpagam, R., Raj, K.J., Ashokkumar, B., Varalakshmi, P.: Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology. Bioresour. Technol. 188, 177–184 (2015). doi:10.1016/j.biortech.2015.01.053

    Article  Google Scholar 

  29. Uncu, O.N., Cekmecelioglu, D.: Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manag. 31, 636–643 (2011). doi:10.1016/j.wasman.2010.12.007

    Article  Google Scholar 

  30. Li, Z., Yuan, H., Yang, J., Li, B.: Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341., Bioresour. Technol. 102, 9128–9134 (2011). doi:10.1016/j.biortech.2011.07.004

    Article  Google Scholar 

  31. Gurkok, S., Cekmecelioglu, D., Ogel, Z.B.: Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. Bioresour. Technol. 102, 4925–4929 (2011). doi:10.1016/j.biortech.2011.01.036

    Article  Google Scholar 

  32. Lakshmikandan, M., Murugesan, A.G.: Enhancement of growth and biohydrogen production potential of Chlorella vulgaris MSU-AGM 14 by utilizing seaweed aqueous extract of Valoniopsis pachynema. Renew. Energy. 96, 390–399 (2016). doi:10.1016/j.renene.2016.04.097

    Article  Google Scholar 

  33. Juneja, A., Ceballos, R., Murthy, G.: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A Review. Energies 6, 4607–4638 (2013). doi:10.3390/en6094607

    Article  Google Scholar 

  34. Kanaga, K., Pandey, A., Kumar, S., Geetanjali: Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738., Bioresour. Technol. 200, 940–950 (2016). doi:10.1016/j.biortech.2015.11.017

    Article  Google Scholar 

  35. Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14, 217–232 (2010). doi:10.1016/j.rser.2009.07.020

    Article  Google Scholar 

  36. Xiufeng, W.Q. L., Han, X., Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. (2007). doi:10.1002/bit.

    Google Scholar 

Download references

Acknowledgements

We would like to thank to Dr. Melih Onay for his isolation and characterization of microalgal species used in this study. This study was carried out in the following laboratories: Middle East Technical University (METU) Central Laboratory Molecular Biology and Biotechnology R&D Center, METU Biology Department Plant Biotechnology Laboratory and METU Food Engineering Department Bioprocess Laboratory. We would like to thank to TUBITAK Project Number :114Z487 for providing funding to Iskin Kose Engin during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Avni Oktem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kose Engin, I., Cekmecelioglu, D., Yücel, A.M. et al. Enhancement of Heterotrophic Biomass Production by Micractinium sp. ME05 . Waste Biomass Valor 9, 811–820 (2018). https://doi.org/10.1007/s12649-017-9846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9846-8

Keywords

Navigation