Waste and Biomass Valorization

, Volume 9, Issue 5, pp 861–869 | Cite as

Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica

  • Shuping Zhang
  • Tao Chen
  • Yuanquan Xiong
Original Paper


Rice husk is an abundant agricultural by-product and the common disposal method of rice husk could cause serious environmental and human health problems. In this study, effects of washing with aqueous fraction of bio-oil on pyrolysis characteristic of rice husk and preparation of amorphous silica from combustion of biochar were investigated. Most metallic species in rice husk, especially alkali and alkaline earth metals (AAEMs), can be effectively removed by washing pretreatment with aqueous fraction of bio-oil. Thermogravimetric analysis indicated that aqueous fraction of bio-oil washing pretreatment prior to pyrolysis process obviously increased the value of pyrolysis characteristics parameters, such as the max decomposition rate, the temperature according to the max decomposition rate, and the mean decomposition rate. Meanwhile, the apparent activation energy was slightly increased after washing pretreatment. Furthermore, the high purity amorphous silica with a purity of 99.33% was obtained from combustion of biochar from pyrolysis of aqueous fraction of bio-oil washed rice husk. In addition, a novel method for utilization of rice husk via washing with aqueous fraction of bio-oil, pyrolysis and combustion of biochar was proposed. This method resolved the problem of pollution and waste aroused by rice husk and the whole process is known to be self-heating and environmentally friendly.

Graphical Abstract


Rice husk Washing Pyrolysis Kinetics Amorphous silica 



The authors acknowledge the financial supports from the the National Science Technology Support Plan Projects of China (No. 2014BAA05B01), the National High-Tech R&D Program of China (No. 2011AA05A201), the National Natural Science Foundation of China (No. 51376047), the Fundamental Research Funds for the Central Universities (No. 2242016K41041), the Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1603), and the Scientific Innovation Research Program of College Graduate in Jiangsu Province (No. KYLX16-0199).


  1. 1.
    Pode, R.: Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 53, 1468–1485 (2016). doi: 10.1016/j.rser.2015.09.051 CrossRefGoogle Scholar
  2. 2.
    Zhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., Zhao, X.: A new method of utilizing rice husk: consecutively preparing D-xylose, organosolv lignin, ethanol and amorphous superfine silica. J. Hazard. Mater. 291, 65–73 (2015). doi: 10.1016/j.jhazmat.2015.03.003 CrossRefGoogle Scholar
  3. 3.
    Lim, J.S., Abdul Manan, Z., Wan Alwi, S.R., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 16(5), 3084–3094 (2012). doi: 10.1016/j.rser.2012.02.051 CrossRefGoogle Scholar
  4. 4.
    Gu, S., Zhou, J., Luo, Z., Wang, Q., Ni, M.: A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind. Crop Prod. 50, 540–549 (2013). doi: 10.1016/j.indcrop.2013.08.004
  5. 5.
    Carmona, V.B., Oliveira, R.M., Silva, W.T.L., Mattoso, L.H.C., Marconcini, J.M.: Nanosilica from rice husk: Extraction and characterization. Ind. Crop Prod. 43, 291–296 (2013). doi: 10.1016/j.indcrop.2012.06.050 CrossRefGoogle Scholar
  6. 6.
    Zhai, M., Zhang, Y., Dong, P., Liu, P.: Characteristics of rice husk char gasification with steam. Fuel 158, 42–49 (2015). doi: 10.1016/j.fuel.2015.05.019 CrossRefGoogle Scholar
  7. 7.
    Chen, G., Du, G., Ma, W., Yan, B., Wang, Z., Gao, W.: Production of amorphous rice husk ash in a 500 kW fluidized bed combustor. Fuel 144, 214–221 (2015). doi: 10.1016/j.fuel.2014.12.012 CrossRefGoogle Scholar
  8. 8.
    Das, O., Sarmah, A.K.: Value added liquid products from waste biomass pyrolysis using pretreatments. Sci. Total Environ. 538, 145–151 (2015). doi: 10.1016/j.scitotenv.2015.08.025 CrossRefGoogle Scholar
  9. 9.
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128, 162–169 (2014). doi: 10.1016/j.fuel.2014.02.074 CrossRefGoogle Scholar
  10. 10.
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. Bioresource Technol. 170, 132–137 (2014). doi: 10.1016/j.biortech.2014.07.073 CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Guo, Y.P., Zhu, Y.C., An, D.M., Gao, W., Wang, Z., Ma, Y.J., Wang, Z.C.: A sustainable route for the preparation of activated carbon and silica from rice husk ash. J. Hazard. Mater. 186(2–3), 1314–1319 (2011)CrossRefGoogle Scholar
  12. 12.
    Reckamp, J.M., Garrido, R.A., Satrio, J.A.: Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products. Biomass Bioenergy 71, 235–244 (2014). doi: 10.1016/j.biombioe.2014.10.003 CrossRefGoogle Scholar
  13. 13.
    Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., Yao, H.: Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process. Technol. 91(8), 903–909 (2010). doi: 10.1016/j.fuproc.2009.09.014 CrossRefGoogle Scholar
  14. 14.
    Deng, L., Zhang, T., Che, D.: Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Process. Technol. 106, 712–720 (2013). doi: 10.1016/j.fuproc.2012.10.006 CrossRefGoogle Scholar
  15. 15.
    Mourant, D., Wang, Z., He, M., Wang, X.S., Garcia-Perez, M., Ling, K., Li, C.-Z.: Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel. 90(9), 2915–2922 (2011). doi: 10.1016/j.fuel.2011.04.033 CrossRefGoogle Scholar
  16. 16.
    Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., Jones, J.M.: The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 87(7), 1230–1240 (2008). doi: 10.1016/j.fuel.2007.07.026 CrossRefGoogle Scholar
  17. 17.
    Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R.A.: Demineralization of wood using wood-derived acid: Towards a selective pyrolysis process for fuel and chemicals production. J. Anal. Appl. Pyrolysis 103, 112–118 (2013). doi: 10.1016/j.jaap.2012.10.002 CrossRefGoogle Scholar
  18. 18.
    Yang, Z., Kumar, A., Huhnke, R.L.: Review of recent developments to improve storage and transportation stability of bio-oil. Renew. Sustain. Energy Rev. 50, 859–870 (2015). doi: 10.1016/j.rser.2015.05.025 CrossRefGoogle Scholar
  19. 19.
    Vamvuka, D., Salpigidou, N., Kastanaki, E., Sfakiotakis, S.: Possibility of using paper sludge in co-firing applications. Fuel. 88(4), 637–643 (2009)CrossRefGoogle Scholar
  20. 20.
    Shen, J., Liu, X., Zhu, S., Zhang, H., Tan, J.: Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater Lett. 65(8), 1179–1183 (2011). doi: 10.1016/j.matlet.2011.01.034 CrossRefGoogle Scholar
  21. 21.
    Shen, Y., Zhao, P., Shao, Q.: Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater. 188, 46–76 (2014). doi: 10.1016/j.micromeso.2014.01.005 CrossRefGoogle Scholar
  22. 22.
    Kong, Z., Liaw, S.B., Gao, X., Yu, Y., Wu, H.: Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. Fuel 128, 433–441 (2014). doi: 10.1016/j.fuel.2014.03.025 CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Hoekman, S.K., Balasubramanian, R., Zhang, F.-S.: Improvement of fuel qualities of solid fuel biochars by washing treatment. Fuel Process. Technol. 134, 130–135 (2015). doi: 10.1016/j.fuproc.2015.01.025 CrossRefGoogle Scholar
  24. 24.
    Ang, T.N., Ngoh, G.C., Chua, A.S.M: Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour. Technol. 135, 116–119 (2013)CrossRefGoogle Scholar
  25. 25.
    Pecha, B., Arauzo, P., Garcia-Perez, M.: Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood. J. Anal. Appl. Pyrolysis 114, 127–137 (2015). doi: 10.1016/j.jaap.2015.05.014 CrossRefGoogle Scholar
  26. 26.
    Umeda, J., Kondoh, K.: High-purity amorphous silica originated in rice husks via carboxylic acid leaching process. J. Mater. Sci. 43(22), 7084–7090 (2008). doi: 10.1007/s10853-008-3060-9 CrossRefGoogle Scholar
  27. 27.
    Zhang, S.P., Xiong, Y.Q.: Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar. Rsc Adv. 6(7), 5270–5277 (2016).CrossRefGoogle Scholar
  28. 28.
    Zhang, S., Dong, Q., Zhang, L., Xiong, Y., Liu, X., Zhu, S.: Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating. Bioresource Technol. 193, 442–448 (2015). doi: 10.1016/j.biortech.2015.06.142 CrossRefGoogle Scholar
  29. 29.
    Lu, K.-M., Lee, W.-J., Chen, W.-H., Lin, T.-C.: Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Appl. Energy 105, 57–65 (2013). doi: 10.1016/j.apenergy.2012.12.050 CrossRefGoogle Scholar
  30. 30.
    El-Sayed, S.A., Mostafa, M.E.: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manage. 85, 165–172 (2014). doi: 10.1016/j.enconman.2014.05.068 CrossRefGoogle Scholar
  31. 31.
    Zahara, Z.F., Kudo, S., Norinaga, K., Hayashi, J.-i: Leaching of alkali and alkaline earth metallic species from rice husk with bio-oil from its Pyrolysis. Energy Fuels 28(10), 6459–6466 (2014). doi: 10.1021/ef501748h CrossRefGoogle Scholar
  32. 32.
    Zhang, M., Wu, H: Bioslurry as a fuel. 6. leaching characteristics of alkali and alkaline earth metallic species from biochar by bio-oil model compounds. Energy Fuels. 29(4), 2535–2541 (2015). doi: 10.1021/acs.energyfuels.5b00274 CrossRefGoogle Scholar
  33. 33.
    Vamvuka, D., Sfakiotakis, S.: Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics. Renew. Energy. 36(9), 2433–2439 (2011). doi: 10.1016/j.renene.2011.02.013 CrossRefGoogle Scholar
  34. 34.
    Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D., Liang, D.: Influence of mineral matter on pyrolysis of palm oil wastes. Combust. Flame. 146(4), 605–611 (2006). doi: 10.1016/j.combustflame.2006.07.006 CrossRefGoogle Scholar
  35. 35.
    Paasikallio, V., Kihlman, J., Sánchez, C.A.S., Simell, P., Solantausta, Y., Lehtonen, J.: Steam reforming of pyrolysis oil aqueous fraction obtained by one-step fractional condensation. Int. J. Hydrogen Energy. 40(8), 3149–3157 (2015). doi: 10.1016/j.ijhydene.2015.01.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations