Skip to main content
Log in

Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Fundamental studies on the removal of metal impurities are essential for the production of nanosilica by combustion. This study reports the leaching characteristics, leaching kinetics and occurrence form of the metal impurities present in rice husk based on acid pretreatment. Acid pretreatment removes most of the metal impurities present in rice husk. In particular, 98 wt% removal of potassium can be reached. The acid concentration, leaching time and reagent type have significant effects on the leaching of metal impurities, and optimal conditions exist for the acid pretreatment process. Furthermore, the leaching of metal impurities occurs through two stages, and parts of the metal impurities exist in organic-bound form, which can be leached through ion exchange. The results show that the pseudo-second-order model is suitable for describing the leaching kinetics of the metal impurities present in rice husk, and empirical formulas for predicting the metal contents leached from rice husk during acid pretreatment at ambient temperature are also obtained. Additionally, the different occurrence form and quantities of metal impurities in rice husk lead to different leaching effects, which strongly influences the chemical properties and quality of the obtained silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fu, S. Hu, J. Xiang, W. Yi, X. Bai, L. Sun and S. Su, Bioresour. Technol., 114, 691 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. D. A. Awizar, N. K. Othman, A. Jalar, A. R. Daud, I. A. Rahman and N. H. Al-Hardan, Int. J. Electrochem. Sc., 8, 1759 (2013).

    CAS  Google Scholar 

  3. B. S. Thomas, Renew. Sust. Energ. Rev., 82, 3913 (2018).

    Article  CAS  Google Scholar 

  4. Y. Zhou, Z. Tian, R. Fan, S. Zhao, R. Zhou, H. Guo and Z. Wang, Powder Technol., 284, 365 (2015).

    Article  CAS  Google Scholar 

  5. Y. Fan, R. Yang, Z. Lei, N. Liu, J. Lv, S. Zhai, B. Zhai and L. Wang, Korean J. Chem. Eng., 33, 1416 (2016).

    Article  CAS  Google Scholar 

  6. S. Artkla, Korean J. Chem. Eng., 29, 555 (2012).

    Article  CAS  Google Scholar 

  7. M. Sarangi, P. Nayak and T. N. Tiwari, Compos. Part B-Eng., 42, 1994 (2011).

    Article  CAS  Google Scholar 

  8. S. Huang, S. Jing, J. Wang, Z. Wang and Y. Jin, Powder Technol., 117, 232 (2001).

    Article  CAS  Google Scholar 

  9. R. V. Krishnarao, J. Subrahmanyam and T. Jagadish Kumar, J. Eur. Ceram. Soc., 1, 99 (2001).

    Article  Google Scholar 

  10. M. Zevenhoven, P. Yrjas, B. J. Skrifvars and M. Hupa, Energy Fuels, 26, 6366 (2012).

    Article  CAS  Google Scholar 

  11. D. J. Nowakowski, J. M. Jones, R. M. D. Brydson and A. B. Ross, Fuel, 86, 2389 (2007).

    Article  CAS  Google Scholar 

  12. X. Liu and X. T. Bi, Fuel Process. Technol., 92, 1273 (2011).

    Article  CAS  Google Scholar 

  13. C. Yu, Y. Zheng, Y. S. Cheng, B. M. Jenkins, R. Zhang and J. S. Vander-Gheynst, Bioresour. Technol., 101, 4331 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. H. Liu, M. Li, X. Cao and R. Sun, Energy Technol., 1, 70 (2013).

    Article  CAS  Google Scholar 

  15. S. Al-Zuhair, M. Abualreesh, K. Ahmed and A. Abdul Razak, Energy Technol., 3, 121 (2015).

    Article  CAS  Google Scholar 

  16. A. Salas, S. Delvasto, R. Mejia de Gutierrez and D. Lange, Cement Concrete Res., 9, 773 (2009).

    Article  CAS  Google Scholar 

  17. H. A. Alyosef, A. Eilert, J. Welscher, S. S. Ibrahim and R. Denecke, Paticul. Sci. Technol., 5, 524 (2013).

    Article  CAS  Google Scholar 

  18. S. Chandrasekhar, P. N. Pramada and J. Majeed, J. Mater. Sci., 41, 7926 (2006).

    Article  CAS  Google Scholar 

  19. Y. S. Ho, H. A. Harouna-Oumarou, H. Fauduet and C. Porte, Sep. Purif. Technol., 45, 169 (2005).

    Article  CAS  Google Scholar 

  20. Y. S. Ho, Water Res., 40, 119 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. S. R. G. Oudenhoven, R. J. M. Westerhof, N. Aldenkamp, D. W. F. Brilman and S. R. A. Kersten, J. Anal. Appl. Pyrolysis, 103, 112 (2013).

    Article  CAS  Google Scholar 

  22. H. Wu, K. Yip, Z. Kong, C. Z. Li, D. Liu, Y. Yu and X. Gao, Ind. Eng. Chem. Res., 50, 12143 (2011).

    Article  CAS  Google Scholar 

  23. S. B. Liaw and H. Wu, Ind. Eng. Chem. Res., 52, 4280 (2013).

    Article  CAS  Google Scholar 

  24. P. Chen, W. Gu, W. Fang, X. Ji and R. Bie, Environ. Prog. Sustain., 36, 830 (2017).

    Article  CAS  Google Scholar 

  25. L. Deng, T. Zhang and D. Che, Fuel Process. Technol., 106, 712 (2013).

    Article  CAS  Google Scholar 

  26. D. S. Scott, L. Paterson, J. Piskorz and D. Radlein, J. Anal. Appl. Pyrolysis, 57, 169 (2001).

    Article  CAS  Google Scholar 

  27. J. Umeda and K. Kondoh, Ind. Crop. Prod., 32, 539 (2010).

    Article  CAS  Google Scholar 

  28. C. Yu, P. Thy, L. Wang, S. N. Anderson, J. S. Vander-Gheynst, S. K. Upadhyaya and B. M. Jenkins, Fuel Process. Technol., 128, 43 (2014).

    Article  CAS  Google Scholar 

  29. D. Mourant, Z. Wang, M. He, X. S. Wang, M. Garcia-Perez, K. Ling and C.-Z. Li, Fuel, 90, 2915 (2011).

    Article  CAS  Google Scholar 

  30. S. Gu, J. Zhou, Z. Luo, Q. Wang and M. Ni, Ind. Crop. Prod., 50, 540 (2013).

    Article  CAS  Google Scholar 

  31. J. Umeda, K. Kondoh, J. Mater. Sci., 43, 7084 (2008).

    Article  CAS  Google Scholar 

  32. S. V. Vassilev, C. G. Vassileva and D. Baxter, Fuel, 129, 292 (2014).

    Article  CAS  Google Scholar 

  33. Z. Kong, S. B. Liaw, X. Gao, Y. Yu and H. Wu, Fuel, 128, 433 (2014).

    Article  CAS  Google Scholar 

  34. D. Lv, M. Xu, X. Liu, Z. Zhan, Z. Li and H. Yao, Fuel Process. Technol., 91, 903 (2010).

    Article  CAS  Google Scholar 

  35. S. Zhang, Q. Dong, L. Zhang and Y. Xiong, Bioresour. Technol., 199, 352 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. S. V. Vassilev, D. Baxter and C. G. Vassileva, Fuel, 117, 152 (2014).

    Article  CAS  Google Scholar 

  37. S. V. Vassilev, D. Baxter, L. K. Anderden and C. G. Vassileva, Fuel, 89, 913 (2010).

    Article  CAS  Google Scholar 

  38. Z. He, J. Mao, C. W. Honeycutt, T. Ohno, J. F. Hunt and B. J. Cade-Menun, Biol. Fert. Soils, 45, 609 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushan Bie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Bie, H. & Bie, R. Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles. Korean J. Chem. Eng. 35, 1911–1918 (2018). https://doi.org/10.1007/s11814-018-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0103-z

Keywords

Navigation