Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts


Solid-state fermentation is a microbial process carried out mostly on the surface of solid materials. Grapefruit by-products are solids that can be used as a substrate-support matrix for fungal growth in solid fermentation. On the other hand, with the fermentation, the valorization of grapefruit by-products can be done because of recovery of secondary metabolites such as antioxidants. Fermentations were done using Raimbault columns as bioreactors. Two mixture levels (50 and 70% moisture content) were evaluated. Fungal growth was analysed online by CO2 quantification for fermentation of grapefruit by-products with Aspergillus niger GH1. Ethanolic extracts were used for antioxidant analyses (FRAP, LOI and DPPH·radical-scavenging). A. niger GH1 showed better growth on grapefruit by-products at 70% moisture content. Recovery of antioxidant compounds and solids reduction (50% of solids loss) was also higher at 70% moisture content. These results suggest that solid-state fermentation has great potential for valorization of grapefruit by-products as a support and a carbon source to produce antioxidants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Haminiuk, C.W.I., Maciel, G.M., Plata-Oviedo, M.S.V., Peralta, R.M.: Phenolic compounds in fruits—an overview. Int. J. Food Sci. Technol. 47(10), 2023–2044 (2012)

    Article  Google Scholar 

  2. 2.

    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels I. Solvent extraction method. Sep. Purif. Technol. 48(2), 182–188 (2006)

    Article  Google Scholar 

  3. 3.

    de Moraes Barros, H.R., de Castro Ferreira, T.A., Genovese, M.I.: Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 134(4), 1892–1898 (2012)

    Article  Google Scholar 

  4. 4.

    Lagha-Benamrouche, S., Madani, K.: Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crops Prod. 50(0), 723–730 (2013)

    Article  Google Scholar 

  5. 5.

    Xu, G.H., Chen, J.C., Liu, D.H., Zhang, Y.H., Jiang, P., Ye, X.Q.: Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci. 73(1), C11–C18 (2008)

    Google Scholar 

  6. 6.

    Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., Madani, K.: Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 50(0), 77–87 (2013)

    Article  Google Scholar 

  7. 7.

    Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., Ye, X.: Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J. Food Sci. 78(1), C37–C42 (2013)

    Article  Google Scholar 

  8. 8.

    Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., et al.: Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123(2), 423–429 (2010)

    Article  Google Scholar 

  9. 9.

    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48(2), 189–196 (2006)

    Article  Google Scholar 

  10. 10.

    Yang, F.-C., Ma, T.-W., Lee, Y.-H.: Reuse of citrus peel to enhance the formation of bioactive metabolite-triterpenoid in solid-state fermentation of A. cinnamomea. Biochem. Eng. J. 78(0), 59–66 (2013)

    Article  Google Scholar 

  11. 11.

    Viniegra-González, G.: Solid state fermentation: definition, characteristics, limitations and monitoring. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-González, G. (eds.) Advances in Solid State Fermentation, pp. 5–22. Springer, Netherlands (1997)

    Google Scholar 

  12. 12.

    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)

    Article  Google Scholar 

  13. 13.

    Chen, H., He, Q.: Value-added bioconversion of biomass by solid-state fermentation. J. Chem. Technol. Biotechnol. 87(12), 1619–1625 (2012)

    Article  Google Scholar 

  14. 14.

    Ooijkaas, L.P., Weber, F.J., Buitelaar, R.M., Tramper, J., Rinzema, A.: Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 18(8), 356–360 (2000)

    Article  Google Scholar 

  15. 15.

    Hölker, U., Lenz, J.: Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 8(3), 301–306 (2005)

    Article  Google Scholar 

  16. 16.

    Schuster, E., Dunn-Coleman, N., Frisvad, J., van Dijck, P.: On the safety of Aspergillus niger—a review. Appl. Microbiol. Biotechnol. 59(4–5), 426–435 (2002)

    Google Scholar 

  17. 17.

    Buenrostro-Figueroa, J., Ascacio-Valdés, A., Sepúlveda, L., De la Cruz, R., Prado-Barragán, A., Aguilar-González, M.A., et al.: Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprocess. Technol. 92(4), 376–382 (2014)

    Google Scholar 

  18. 18.

    AOAC: Official Methods of Analysis. Association of Official Analytical Chemist, USA (1990)

    Google Scholar 

  19. 19.

    Raimbault, M., Alazard, D.: Culture method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9(3), 199–209 (1980)

    Article  Google Scholar 

  20. 20.

    Saucedo-Castañeda, G., Trejo-Hernández, M.R., Lonsane, B.K., Navarro, J.M., Roussos, S., Dufour, D., et al.: On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem. 29(1), 13–24 (1994)

    Article  Google Scholar 

  21. 21.

    Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  22. 22.

    Meléndez, N.P., Nevárez-Moorillón, V., Rodríguez-Herrera, R., Espinoza, J.C., Aguilar, C.N.: A microassay for quantification of 2,2-diphenyl-1-picrylhydracyl (DPPH) free radical scavenging. Afr. J. Biochem. Res. 8(1), 14–18 (2014)

    Article  Google Scholar 

  23. 23.

    Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)

    Article  Google Scholar 

  24. 24.

    Martínez-Ávila, G.C., Aguilera-Carbó, A.F., Rodríguez-Herrera, R., Aguilar, C.N.: Fungal enhancement of the antioxidant properties of grape waste. Ann. Microbiol. 62(3), 923–930 (2012)

    Article  Google Scholar 

  25. 25.

    Rhee, K.S.: Factors affecting oxygen uptake in model systems used for investigating lipid peroxidation in meat. J. Food Sci. 43(1), 6–9 (1978)

    Article  Google Scholar 

  26. 26.

    Toivonen, P.M.A., Sweeney, M.: Differences in chlorophyll loss at 13 °C for two broccoli (Brassica oleracea L.) cultivars associated with antioxidant enzyme activities. J. Agric. Food Chem. 46(1), 20–24 (1998)

    Article  Google Scholar 

  27. 27.

    Robledo, A., Aguilera-Carbó, A., Rodriguez, R., Martinez, J., Garza, Y., Aguilar, C.N.: Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotechnol. 35(6), 507–513 (2008)

    Article  Google Scholar 

  28. 28.

    Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodriguez, R., de la Garza, H., Teixeira, J.A., et al.: Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 30(1), 24–27 (2009)

    Article  Google Scholar 

  29. 29.

    Moo-Young, M., Moreira, A., Tengerdy, R.: Principles of solid-substrate fermentation. In: Smith, J.E., Berry, D.R., Kristiansen, B. (eds.) The Filamentous Fungi, pp. 117–144. Edward Arnold, London (1983)

    Google Scholar 

  30. 30.

    Rincón, A.M., Vásquez, A., Padilla, M.: Composición química y compuestos bioactivos de las harinas de cáscaras de naranja (citrus sinensis), mandarina (citrus reticulata) y toronja (citrus paradisi) cultivadas en Venezuela. Arch. Latinoam. Nutr. 55, 305–310 (2005)

    Google Scholar 

  31. 31.

    Nagel, F.-J.J.I., Tramper, J., Bakker, M.S.N., Rinzema, A.: Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol. Bioeng. 72(2), 219–230 (2001)

    Article  Google Scholar 

  32. 32.

    Rahardjo, Y.S.P., Tramper, J., Rinzema, A.: Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24(2), 161–179 (2006)

    Article  Google Scholar 

  33. 33.

    Chen, H.: Modern Solid State Fermentation—Theory and Practice. Springer, Londres (2013)

    Google Scholar 

  34. 34.

    Gervais, P., Molin, P.: The role of water in solid-state fermentation. Biochem. Eng. J. 13(2–3), 85–101 (2003)

    Article  Google Scholar 

  35. 35.

    Ajila, C.M., Gassara, F., Brar, S., Verma, M., Tyagi, R.D., Valéro, J.R.: Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity. Food Bioprocess. Technol. 5(7), 2697–2707 (2012)

    Article  Google Scholar 

  36. 36.

    Ajila, C.M., Brar, S.K., Verma, M., Tyagi, R.D., Valéro, J.R.: Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidants. Food Chem. 126(3), 1071–1080 (2011)

    Article  Google Scholar 

Download references


RLC thanks the Mexican Council for Science and Technology (CONACYT) Mexico for the financial support during his MSc studies.

Author information



Corresponding author

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larios-Cruz, R., Buenrostro-Figueroa, J., Prado-Barragán, A. et al. Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts. Waste Biomass Valor 10, 763–769 (2019).

Download citation


  • Aspergillus niger GH1
  • CO2 production
  • Antioxidant extraction
  • Packed-bed bioreactor