Skip to main content
Log in

Polyphenolic Antioxidant Mobilization in Apple Pomace by Different Methods of Solid-State Fermentation and Evaluation of Its Antioxidant Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An investigation was carried out to understand the changes and mobilization of polyphenolics and the improvement in their antioxidant properties in apple pomace by solid-state fermentation using Generally Recognized as Safe grade fungus, Phanerochaete chrysosporium, by different fermentation techniques, such as flask, tray, and fermentor. β-glucosidase, ligninolytic enzymes activity, and polyphenolic-linked antioxidant activity of apple pomace during solid-state fermentation was studied. During the course of solid-state fermentation, there was an increase in the extractable polyphenolic content (15.53 to 29.28 mg of gallic acid equivalents per gram of dry weight (DW)) on the 7th day followed by a decline in the polyphenol content. Antioxidant activity was measured by 1,1-diphenyl-2-picrylhydrazyl radical inhibition system, and the increase in activity (∼35%) was directly proportional to polyphenolic content over the course of solid-state fermentation. After an initial lag phase with little activity, the β-glucosidase activity increased by 6-, 7-, and 6-fold in flask (18.12 U/g DW samples), fermentor (44.52 U/g of DW sample), and tray fermentation (46.66 U/g DW sample) methods, respectively. Both polyphenolics and antioxidant capacity correlated with the increase in the β-glucosidase activity and showed that the enzyme played an important role in the release of polyphenolic aglycones from apple pomace and therefore increased the antioxidant capacity. In addition, ligninolytic enzymes showed a direct correlation with the mobilization and polymerization of polyphenolic content during the solid-state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiassam, H., Errachidi, F., Pennickx, M. J., Merzouki, M., & Benlemlih, M. (2005). Production of Tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste water. World Journal of Microbiology & Biotechnology, 21, 609–614.

    Article  Google Scholar 

  • Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium —liberation and extraction of phenolic antioxidants. Food Chemistry, 126, 1071–1080.

    Article  CAS  Google Scholar 

  • Aranda, E., Sampedro, I., Ocampo, J. A., & García-Romera, I. (2006). Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth. International Biodeterioration and Biodegradation, 58, 176–179.

    Article  CAS  Google Scholar 

  • Asses, N., Ayed, L., Bouallagui, H., Sayadi, S., & Hamdi, M. (2009). Biodegradation of different molecular-mass polyphenols derived from olive mill wastewaters by Geotrichum candidum. International Biodeterioration and Biodegradation, 63, 407–413.

    Article  CAS  Google Scholar 

  • Baldrian, P. (2006). Fungal laccases—occurrence and properties. FEMS Microbiological Review, 30, 215–242.

    Article  CAS  Google Scholar 

  • Belinky, P. A., Flikshtein, N., Lechenko, S., Gepstein, S., & Dosoretz, C. G. (2003). Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 69(11), 6500–6506.

    CAS  Google Scholar 

  • Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P. S. (2008). Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28(4), 285–296.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28, 25–30.

    CAS  Google Scholar 

  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutritional Reviews, 56(11), 317–333.

    CAS  Google Scholar 

  • Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120–128.

    Article  CAS  Google Scholar 

  • Ćetkovic, G., Čanadanović-Bruneta, J., Djilasa, S., Savatovića, S., Mandića, A., & Tumbasa, V. (2008). Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chemistry, 109(2), 340–347.

    Article  Google Scholar 

  • Collins, P. J., & Dobson, A. D. W. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63(9), 3444–3450.

    CAS  Google Scholar 

  • Correia, R. T. P., McCue, P., Magalhães, M. M. A., Macˆedo, R., & Shetty, K. (2004). Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry, 39(12), 2167–2172.

    Article  CAS  Google Scholar 

  • Couto, S. R., & Sanromán, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 22(3), 211–219.

    Article  Google Scholar 

  • Couto, S. R., & Toca-Herrera, J. L. (2007). Laccase production at reactor scale by filamentous fungi. Biotechnological Advances, 25(6), 558–569.

    Article  CAS  Google Scholar 

  • Duhalt, R. V., Westlake, D. W. S., & Fedorak, P. M. (1994). Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Applied and Environmental Microbiology, 60(2), 459–66.

    Google Scholar 

  • Favela-Torres, E., Volke, S. T., & Viniegra, G. G. (2006). Production of hydrolytic depolymerising pectinases. Food Technology and Biotechnology, 44(22), 221–227.

    CAS  Google Scholar 

  • Fujian, X., Zhang, C. H., & Zuohn, L. (2001). Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam exploded straw as substrate. Bioresource Technology, 80(2), 149–151.

    Article  CAS  Google Scholar 

  • Gassara, F., Brar, S. K., Tyagi, R. D., Verma, M., & Surampalli, R. Y. (2010). Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochemical Engineering Journal, 49(3), 388–394.

    Article  CAS  Google Scholar 

  • Gunata, Y. Z., Bayonove, C. L., Cordonnier, R. E., Arnaud, A., & Galzy, P. (1990). Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wicherhamii β-glucosidase. Journal of Food Science and Agriculture, 50(4), 499–506.

    Article  CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1986). Solid state fermentation of apple pomace for citric acid production. World Journal of Microbiology and Biotechnology, 2(2), 283–287.

    Article  CAS  Google Scholar 

  • Hang, Y. D., & Woodams, E. E. (1994). Apple pomace: a potential substrate for production of β-glucosidase by Aspergillus foetidus. Lebensmittel-Wissenschaft und Technologie, 27(6), 587–589.

    CAS  Google Scholar 

  • Hang, Y. D., Lee, C. Y., Woodams, E. E., & Cooley, H. J. (1981). Production of alcohol from apple pomace. Applied and Environmental Microbiology, 42(6), 1128–1129.

    CAS  Google Scholar 

  • Hildén, L., Johansson, G., Pettersson, G., Li, J., Ljungquist, P., & Henriksson, G. (2000). Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? FEBS Letter, 477(1–2), 79–83.

    Article  Google Scholar 

  • Jaouani, A., Guillen, F., Penninckx, M. J., Martinez, A. T., & Martinez, M. J. (2005). Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme and Microbial Technology, 36, 478–486.

    Article  CAS  Google Scholar 

  • Kissi, M., Mountadar, M., Assobhei, O., Gargiulo, E., Palmieri, G., Giardina, P., et al. (2001). Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Applied Microbiology and Biotechnology, 57(1–2), 221–226.

    CAS  Google Scholar 

  • Li, B., & Renganathan. (1998). Gene cloning and characterization of a novel cellulose-binding β-glucosidase from Phanerochaete chrysosporium. Applied and Environmental Microbiology, 64(7), 2748–2754.

    CAS  Google Scholar 

  • Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Engineering aspects of solid state fermentation. Enzyme and Microbial Technology, 64(7), 258–265.

    Article  Google Scholar 

  • Mahajan, P. M., Desai, K. M., & Lele, S. S. (2010). Production of cell membrane-bound α- and β-glucosidase by Lactobacillus acidophilus. Food and Bioprocess Technology. doi:10.1007/s11947-010-0417-2.

    Google Scholar 

  • McCann, M. J., Gill, C. I. R., Brien, O., Rao, G., McRoberts, J. R., Hughes, W. C., et al. (2007). Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food and Chemical Toxicology, 45(7), 1224–1230.

    Article  CAS  Google Scholar 

  • Murashima, K., Nishimura, T., Nakamura, Y., Koga, J., Moriya, T., Sumida, N., et al. (2002). Purification and characterization of new endo-1, 4–d-glucanases from Rhizopus oryzae. Enzyme and Microbial Technology, 30(3), 319–26.

    Article  CAS  Google Scholar 

  • Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Current Science, 77(1), 149–162.

    CAS  Google Scholar 

  • Reid, S., Sims, I. M., Melton, L. D., & Gane, A. M. (1999). Characterization of extracellular polysaccharides from suspension cultures of apple (Malus domestica). Carbohydrate Polymers, 39(4), 369–379.

    Article  CAS  Google Scholar 

  • Sayadi, S., & Ellouz, R. (1995). Roles of lignin peroxydase and manganese peroxydase from Phanearochaete chrysosporium in the decoloration of olive mill wastewater. Applied and Environmental Microbiology, 61, 1098–1103.

    CAS  Google Scholar 

  • Sayadi, S., Allouche, N., & Jaoua, M. (2000). Detrimental effects high molecular-masse polyphenols on olive mill wastewater biotreatment. Process Biochemistry, 35, 725–735.

    Article  CAS  Google Scholar 

  • Schieber, A., Hilt, P., Streker, P., Endress, H. U., Rentschler, C., & Carle, R. (2003). A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science & Emerging Technologies, 4(1), 99–107.

    Article  CAS  Google Scholar 

  • Sehm, J., Lindermayer, H., Dummer, C., Treutter, D., & Pfaffl, M. W. (2007). The influence of polyphenol rich apple pomace or red-wine pomace diet on the gut morphology in weaning piglets. Journal of Animal Physiology and Animal Nutrition, 91(7–8), 289–296.

    Article  CAS  Google Scholar 

  • Shetty, P., Atallah, M. T., & Shetty, K. (2002). Effects of UV treatment on the praline-linked pentose phosphate pathway for phenolics and LDOPA systhesis in dark germinated Vicia faba. Process Biochemistry, 37(11), 1285–95.

    Article  CAS  Google Scholar 

  • Suárez, B., Álvarez, A. L., García, Y. D., Barrio, G., Lobo, A. P., & Parra, F. (2010). Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chemistry, 120(1), 339–342.

    Article  Google Scholar 

  • Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica. 1. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63–68.

    Article  CAS  Google Scholar 

  • Tien, M., & Kirk, T. K. (1984). Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2- requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 81(8), 2280–2284.

    Article  CAS  Google Scholar 

  • Vattem, D. A., & Shetty, K. (2002). Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporus. Food Biotechnololgy, 16(3), 189–210.

    Article  CAS  Google Scholar 

  • Vattem, D. A., & Shetty, K. (2003). Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochemistry, 39(3), 367–379.

    Article  CAS  Google Scholar 

  • Vendruscolo, F., Pitol, L. O., Koch, F., & Ninow, J. L. (2007). Produ¸c˜ao de prote´ına unicelular a partir do baga¸co de ma¸c˜a utilizando fermenta¸c˜ao em estado s´olido. Revista Brasileira de Tecnologia Agroindustrial, 1, 53–57.

    Article  Google Scholar 

  • Wijngaard, H. H., Rossle, C., & Brunton, N. (2009). A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chemistry, 116(1), 202–207.

    Article  CAS  Google Scholar 

  • Zheng, Z., & Shetty, K. (2000). Solid-state bioconversion of phenolics from cranberry pomace and role of Lentinus edodes beta-glucosidase. Journal of Agricultural and Food Chemistry, 48(3), 895–900.

    Article  CAS  Google Scholar 

  • Zilly, A., Bazanella, G. S. C., Helm, C. V., Araújo, C. A. V., Souza, C. G. M., Bracht, A., et al. (2011). Solid-state bioconversion of passion fruit waste by white-rot fungi for production of oxidative and hydrolytic enzymes. Food and Bioprocess Technology. doi:10.1007/s11947-011-0532-8.

    Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355254, Canada Research Chair), FQRNT (ENC 125216), MAPAQ (No. 809051), and Projet Initiative Inde 2010 for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajila, C.M., Gassara, F., Brar, S.K. et al. Polyphenolic Antioxidant Mobilization in Apple Pomace by Different Methods of Solid-State Fermentation and Evaluation of Its Antioxidant Activity. Food Bioprocess Technol 5, 2697–2707 (2012). https://doi.org/10.1007/s11947-011-0582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0582-y

Keywords

Navigation