Skip to main content
Log in

Preparing Desirable Activated Carbons from Agricultural Residues for Potential Uses in Water Treatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This research aims to outline a simple but effective way combining orthogonal array design (OAD), experiments and characterization to produce desirable activated carbons (AC) from agricultural wastes. OAD, and experiments including carbonization, KOH impregnation and activation were combined to optimize the preparation of AC derived from coffee residues with high specific surface areas. Results suggest that the optimized parameters are a carbonization temperature (Tc) of 450 °C (30 min), a KOH impregnation ratio (Rkc) of 3:1, and an activation temperature (Ta) of 750 °C (60 min). Extensive experiments further showed that a 100-min (ta) activation with Ta of 900 °C achieved AC with a specific surface area of 2111 m2/g, a high value that has not been reported previously in the production of AC from coffee wastes. Such high specific surface areas are favorable for use in water treatment, but will lead to a reduced yield of AC. N2 adsorption–desorption isotherms, scanning electron microscopy and Fourier transform infrared spectroscopy were shown to be useful tools for investigating the specific surface area, surface functional groups and pore size distribution of AC. Capacitance performance that may indicate the electrosorption capability of AC being used as electrode materials in capacitive deionization was examined by cyclic voltammetry and galvanostatic charge–discharge curves, and the consistency with specific surface areas was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aber, S., Khataee, A., Sheydaei, M.: Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresour. Technol. 100(24), 6586–6591 (2009)

    Article  Google Scholar 

  2. AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., Hilal, N.: Application of capacitive deionisation in water desalination: a review. Desalination 342, 3–15 (2014). doi:10.1016/j.desal.2014.02.031

    Article  Google Scholar 

  3. Chen, J.P., Wu, S.N.: Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20(6), 2233–2242 (2004). doi:10.1021/la0348463

    Article  Google Scholar 

  4. Choi, J.H.: Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep. Purif. Technol. 70(3), 362–366 (2010)

    Article  Google Scholar 

  5. Deng, H., Zhang, G.L., Xu, X.L., Tao, G.H., Dai, J.L.: Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid–chemical activation. J. Hazard. Mater. 182(1–3), 217–224 (2010). doi:10.1016/j.jhazmat.2010.06.018

    Article  Google Scholar 

  6. Dobele, G., Dizhbite, T., Gil, M.V., Volperts, A., Centeno, T.A.: Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture. Biomass Bioenergy 46, 145–154 (2012). doi:10.1016/j.biombioe.2012.09.010

    Article  Google Scholar 

  7. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marin, F., Moreno-Castilla, C.: Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 111, 185–190 (2012). doi:10.1016/j.biortech.2012.02.010

    Article  Google Scholar 

  8. Goh, K.H., Lim, T.T., Dong, Z.: Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 42(6–7), 1343–1368 (2008). doi:10.1016/j.watres.2007.10.043

    Article  Google Scholar 

  9. Gupta, V.K., Suhas: Application of low-cost adsorbents for dye removal—a review. J. Environ. Manag. 90(8), 2313–2342 (2009). doi:10.1016/j.jenvman.2008.11.017

    Article  Google Scholar 

  10. Klingstedt, M., Miyasaka, K., Kimura, K., Gu, D., Wan, Y., Zhao, D.Y., Terasaki, O.: Advanced electron microscopy characterization for pore structure of mesoporous materials; a study of FDU-16 and FDU-18. J. Mater. Chem. 21(35), 13664–13671 (2011)

    Article  Google Scholar 

  11. Krishnan, S.V., Gullett, B.K., Jozewicz, W.: Sorption of elemental mercury by a activated carbons. Environ. Sci. Technol. 28(8), 1506–1512 (1994). doi:10.1021/es00057a020

    Article  Google Scholar 

  12. Makeswari, M., Santhi, T.: Optimization of preparation of activated carbon from ricinus communis leaves by microwave-assisted zinc chloride chemical activation: competitive adsorption of Ni2+ ions from aqueous solution. J. Chem. (2013). doi:10.1155/2013/314790

    Google Scholar 

  13. Mohan, D., Singh, K.P.: Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res. 36(9), 2304–2318 (2002). doi:10.1016/s0043-1354(01)00447-x

    Article  Google Scholar 

  14. Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006). doi:10.1016/j.jpowsour.2006.02.065

    Article  Google Scholar 

  15. Phadke, M.S.: Quality engineering using robust design. PTR Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  16. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M., Presser, V.: Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6(12), 3700–3712 (2013). doi:10.1039/c3ee42209g

    Article  Google Scholar 

  17. Porada, S., Weinstein, L., Dash, R., van der Wal, A., Bryjak, M., Gogotsi, Y., Biesheuvel, P.M.: Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl. Mater. Interfaces 4(3), 1194–1199 (2012). doi:10.1021/am201683j

    Article  Google Scholar 

  18. Reddad, Z., Gerente, C., Andres, Y., Le Cloirec, P.: Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ. Sci. Technol. 36(9), 2067–2073 (2002). doi:10.1021/es0102989

    Article  Google Scholar 

  19. Repo, E., Warchol, J.K., Bhatnagar, A., Mudhoo, A., Sillanpaa, M.: Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. 47(14), 4812–4832 (2013). doi:10.1016/j.watres.2013.06.020

    Article  Google Scholar 

  20. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.: Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London (2013)

    Google Scholar 

  21. Sing, K.: The use of nitrogen adsorption for the characterisation of porous materials. Colloid Surf. A-Physicochem. Eng. Asp. 187, 3–9 (2001)

    Article  Google Scholar 

  22. Sun, T.H., Shen, Y.F., Jia, J.P.: Gas cleaning and hydrogen sulfide removal for corex coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. Environ. Sci. Technol. 48(4), 2263–2272 (2014). doi:10.1021/es4048973

    Google Scholar 

  23. Tay, T., Ucar, S., Karagoz, S.: Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater. 165(1–3), 481–485 (2009). doi:10.1016/j.jhazmat.2008.10.011

    Article  Google Scholar 

  24. Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.J., Gulde, B.H., Preuss, G., Wilme, U., Seibert, N.Z.: Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol. 36(17), 3855–3863 (2002). doi:10.1021/es015757k

    Article  Google Scholar 

  25. Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., Dai, S.: Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45(23), 10243–10249 (2011). doi:10.1021/es201551e

    Article  Google Scholar 

  26. Wang, H.L., Casalongue, H.S., Liang, Y.Y., Dai, H.J.: Ni(OH)(2) Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)

    Article  Google Scholar 

  27. Wang, J.C., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012). doi:10.1039/C2jm34066f

    Article  Google Scholar 

  28. Wei, L., Yushin, G.: Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4), 552–565 (2012). doi:10.1016/j.nanoen.2012.05.002

    Article  Google Scholar 

  29. Wimalasiri, Y., Zou, L.: Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59, 464–471 (2013). doi:10.1016/j.carbon.2013.03.040

    Article  Google Scholar 

  30. Xiao, H., Peng, H., Deng, S.H., Yang, X.Y., Zhang, Y.Z., Li, Y.W.: Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation–application in reactive black 5 adsorption from aqueous solution. Bioresour. Technol. 111, 127–133 (2012). doi:10.1016/j.biortech.2012.02.054

    Article  Google Scholar 

  31. Yamini, Y., Saleh, A., Khajeh, M.: Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(IV) and rhenium(VII) from a solid matrix using cyanex 301. Sep. Purif. Technol. 61(1), 109–114 (2008)

    Article  Google Scholar 

  32. Zhou, J.S., Hou, W.H., Qi, P., Gao, X., Luo, Z.Y., Cen, K.F.: CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ. Sci. Technol. 47(17), 10056–10062 (2013). doi:10.1021/es401681y

    Article  Google Scholar 

  33. Zou, L., Morris, G., Qi, D.: Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination 225(1–3), 329–340 (2008). doi:10.1016/j.desal.2007.07.014

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (21173039) and International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee (14520721900). Deep gratitude is expressed to the 2015 Foreign Experts Program sponsored by Cultural and Educational Experts, State Administration of Foreign Experts Affairs, China. Furthermore, this work was partly conducted by the Division of Multidisciplinary Research on the Circulation of Waste Resources endowed by the Sendai Environmental Development Co., Ltd. Japan. All the financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyu Liu or Jinli Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, Y., Ma, C. et al. Preparing Desirable Activated Carbons from Agricultural Residues for Potential Uses in Water Treatment. Waste Biomass Valor 6, 1029–1036 (2015). https://doi.org/10.1007/s12649-015-9408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9408-x

Keywords

Navigation