Skip to main content
Log in

Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Solid state fermentation (SSF) is being used as a powerful technology for producing various microbial metabolites such as enzymes. The characteristics of this process, such as low risk of contamination, increased yield, utilization of low-cost substrates, processing simplicity, lower energy requirement and decreased waste water production, have made it more attractive than submerged fermentation (SmF). Thus, this mini review aimed to present the general aspects of SSF processes, drawing parallels with SmF processes. The application potential of SSF was determined from data on the production of several metabolites in a comparative analysis with SmF, with a specific focus on enzyme production. The important parameters related to the physicochemical characteristics of agro-industrial wastes used for SSF and their effects on the production of several enzymes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)

    Article  Google Scholar 

  2. Martins, S., Mussatto, S.I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C.N., Teixeira, J.A.: Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 29(3), 365–373 (2011)

    Article  Google Scholar 

  3. Mitchell, D.A., Luz, L.F.L., Krieger, N., Berovic, M.: Bioreactors for Solid-State Fermentation. Springer, Heidelberg (2006)

    Book  Google Scholar 

  4. Pandey, A., Soccol, C.R., Mitchell, D.: New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 35, 1153–1169 (2000)

    Article  Google Scholar 

  5. Abraham, J., Gea, T., Sánchez, A.: Potential of the solid-state fermentation of soy fibre residues by native microbial populations for bench-scale alkaline protease production. Biochem. Eng. J. 74, 15–19 (2013)

    Article  Google Scholar 

  6. Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V.: Molecular and biotechnological aspect of microbial proteases. Microbiol. Mol. Biol. R. 62, 597–635 (1998)

    Google Scholar 

  7. Chutmanop, J., Chuichulcherm, S., Chisti, Y., Sirinophakun, P.: Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J. Chem. Technol. Biotechnol. 83, 1012–1018 (2008)

    Article  Google Scholar 

  8. Chen, H.-Z., Liu, Z.-H., Dai, S.-H.: A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnol. Biofuels 7, 1–13 (2014)

    Article  Google Scholar 

  9. Asther, M., Haon, M., Roussos, S., Record, E., Delattre, M., Lesage-Meessen, L., Labat, M., Asther, M.: Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Process Biochem. 38, 685–691 (2002)

    Article  Google Scholar 

  10. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A.: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689–2694 (2005)

    Article  Google Scholar 

  11. Colla, L.M., Rizzardi, J., Pinto, M.H., Reinehr, C.O., Bertolin, T.E., Costa, J.A.V.: Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour. Technol. 101, 8308–8314 (2010)

    Article  Google Scholar 

  12. Natarajan, K., Rajendran, A.: Evaluation and optimization of food-grade tannin acyl hydrolase production by a probiotic Lactobacillus plantarum strain in submerged and solid state fermentation. Food Bioprod. Process. 90, 780–792 (2012)

    Article  Google Scholar 

  13. Belmessikh, A., Boukhalfa, H., Mechakra-Maza, A., Gheribi-Aoulmi, Z., Amrane, A.: Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J. Taiwan Inst. Chem. Eng. 44, 377–385 (2013)

    Article  Google Scholar 

  14. Mazotto, A.M., Couri, S., Damaso, M.C.T., Vermelho, A.B.: Degradation of feather waste by Aspergillus niger keratinases: comparison of submerged and solid-state fermentation. Int. Biodeter. Biodegr. 85, 189–195 (2013)

    Article  Google Scholar 

  15. Zhang, B.-B., Lu, L.-P., Xia, Y.-J., Wang, Y.-L., Xu, G.-R.: Use of agar as carrier in solid-state fermentation for Monacolin K production by Monascus: a novel method for direct determination of biomass and accurate comparison with submerged fermentation. Biochem. Eng. J. 80, 10–13 (2013)

    Article  Google Scholar 

  16. Castilho, L.R., Medronho, R.A., Alves, T.L.M.: Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresource Technol. 71, 45–50 (2000)

    Article  Google Scholar 

  17. FAO (2014) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 04 December 2014

  18. Buenrostro-Figueroa, J., Ascacio-Valdés, A., Sepúlveda, L., De La Cruz, R., Prado-Barragán, A., Aguilar-González, M.A., Rodríguez, R., Aguilar, C.N.: Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. 92, 376–382 (2014)

    Article  Google Scholar 

  19. Castro, R.J.S., Nishide, T.G., Sato, H.H.: Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatal. Agric. Biotechnol. (2014). doi:10.1016/j.bcab.2014.06.001i

    Google Scholar 

  20. Demir, H., Tari, C.: Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crop. Prod. 54, 302–309 (2014)

    Article  Google Scholar 

  21. Irfan, M., Nadeem, M., Syed, Q.: One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7, 317–326 (2014)

    Article  Google Scholar 

  22. Li, H., Zhang, R., Tang, L., Zhang, J., Mao, Z.: Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chin. J. Chem. Eng. (2014). doi:10.1016/j.cjche.2014.11.001

    Google Scholar 

  23. Patil, N.S., Jadhav, J.P.: Enzymatic production of N-acetyl-d-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int. Biodeter. Biodegr. 91, 9–17 (2014)

    Article  Google Scholar 

  24. Sadaf, A., Khare, S.K.: Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol. 153, 126–130 (2014)

    Article  Google Scholar 

  25. Veerabhadrappa, M.B., Shivakumar, S.B., Devappa, S.: Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J. Biosci. Bioeng. 117(2), 208–214 (2014)

    Article  Google Scholar 

  26. Chen, H.-Z., Liu, Z.-H., Dai, S.-H.: Value-added bioconversion of biomass by solid-state fermentation. J. Chem. Technol. Biotechnol. 87, 1619–1625 (2012)

    Article  Google Scholar 

  27. Pandey, A., Soccol, C.R., Rodriguez-Leon, J.A., Nigam, P.: Solid-state fermentation in biotechnology-fundamentals and applications. Asiatech Publishers, New Delhi (2001)

    Google Scholar 

  28. Wong, Y., Saw, H., Janaun, J., Krishnaiah, K., Prabhakar, A.: Solid-state fermentation of palm kernel cake with Aspergillus flavus in laterally aerated moving bed bioreactor. Appl. Biochem. Biotechnol. 164, 170–182 (2011)

    Article  Google Scholar 

  29. Ruiz, H.A., Rodriguez-Jasso, R.M., Rodriguez, R., Contreras-Esquivel, J.C., Aguilar, C.N.: Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J. 65, 90–95 (2012)

    Article  Google Scholar 

  30. Melikoglu, M., Lin, C.S.K., Webb, C.: Stepwise optimization of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod. Process. 91, 638–646 (2013)

    Article  Google Scholar 

  31. Chávez-González, M.L., Rodríguez-Durán, L.V., Cruz-Hernández, M., Prado-Barragán, A., Aguilar, C.N.: Packing density and aeration rate effect on tannase production by Aspergillus niger GH1 in solid state fermentation. In: Sabu, A., Aguilar, C.N., Roussos, S. (eds.) Chemistry and Biotechnology of Polyphenols: Fundamentals and Application, p. 199. Cibet Publishers, India (2010)

    Google Scholar 

  32. Pandey, A.: Effect of particle size of substrate on enzyme production in solid-state fermentation. Bioresour. Technol. 37, 169–172 (1991)

    Article  Google Scholar 

  33. Tao, S., Peng, L., Beihui, L., Deming, L., Zuohu, L.: Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol. Lett. 19(5), 465–467 (1997)

    Article  Google Scholar 

  34. Chellappan, S., Jasmin, C., Basheer, S.M., Elyas, K.K., Bhat, S.G., Chandrasekaran, M.: Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem. 41, 956–961 (2006)

    Article  Google Scholar 

  35. Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48(9), 1293–1302 (2013)

    Article  Google Scholar 

  36. Membrillo, I., Sánchez, C., Meneses, M., Favela, E., Loera, O.: Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour. Technol. 99, 7842–7847 (2008)

    Article  Google Scholar 

  37. Mussatto, S.I., Aguilar, C.N., Rodrigues, L.R., Teixeira, J.A.: Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J. Mol. Catal. B: Enzyme 59, 76–81 (2009)

    Article  Google Scholar 

  38. Orzua, M.C., Mussatto, S.I., Contreras-Esquivel, J.C., Rodríguez, R., De La Garza, H., Teixeira, J.A., Aguilar, C.N.: Exploitation of agroindustrial wastes as immobilization carrier for solid-state fermentation. Ind. Crop. Prod. 30, 24–27 (2009)

    Article  Google Scholar 

  39. Ghanem, N.B., Yusef, H.H., Mahrouse, H.K.: Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Bioresour. Technol. 73, 113–121 (2000)

    Article  Google Scholar 

  40. Azeredo, L.A.I., Gomes, P.M.: Sant’anna Jr. G.L., Castilho, L.R., Freire, D.M.G.: Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Curr Microbiol. 54, 361–365 (2007)

    Article  Google Scholar 

  41. Rigo, E., Ninow, J.L., Di Luccio, M., Oliveira, J.V., Polloni, A.E., Remonatto, D., Arbter, F., Vardanega, R., Oliveira, D., Treichel, H.: Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Sci. Technol. 43, 1132–1137 (2010)

    Article  Google Scholar 

  42. Ferraz, L.R., Oliveira, D.S., Silva, M.F., Rigo, E., Di Luccio, M., Oliveira, J.V., Oliveira, D., Treichel, H.: Production and partial characterization of multifunctional lipases by Sporobolomyces ruberrimus using soybean meal, rice meal and sugarcane bagasse as substrates. Biocatal. Agric. Biotechnol. 1, 243–252 (2012)

    Google Scholar 

  43. Thanapimmetha, A., Luadsongkram, A., Titapiwatanakun, B., Srinophakun, P.: Value added waste of Jatropha curcas residue: optimization of protease production in solid state fermentation by Taguchi DOE methodology. Ind. Crop. Prod. 37, 1–5 (2012)

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruann Janser Soares de Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, R.J.S., Sato, H.H. Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste Biomass Valor 6, 1085–1093 (2015). https://doi.org/10.1007/s12649-015-9396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9396-x

Keywords

Navigation