Skip to main content
Log in

Lipid Production for Microbial Biodiesel by the Oleagenious Yeast Rhodotorula glutinis Using Hydrolysates of Wheat Straw and Miscanthus as Carbon Sources

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study investigated the lipid production potential of the red-yeast Rhodotorula glutinis grown on non-detoxified hydrolysates from wheat straw and Miscanthus. The experiments were carried out as batch fermentation experiments in a five liter fermenter. Generally, wheat straw was found to provide a higher sugar content (24.2 g L−1) compared to Miscanthus (20.7 g L−1) which resulted in a higher lipid production. When wheat straw hydrolysate was used as a carbon source, cell mass and lipid production showed a significant increase in maximum cell mass and lipid yield of 11.8 and 1.4 g L−1, respectively. Maximum cell mass growth of R. glutinis on Miscanthus hydrolysate as a carbon source fell within the same range (11.8 g L−1), whereas maximum lipid production after 96 h was lower (0.93 g L−1). A major limitation for cell growth and lipid production was the rapid exhaustion of the total sugar content after 96 h of fermentation in both hydrolysates. This resulted in a decelerated cell growth and lipid production. Lipids from both hydrolysates were dominated by long chain fatty acids, in particular C 16:0, C 18:1 and C 18:2. This composition of lipids corresponds to the common fatty acid obtained from oleaginous microorganisms and indicates a good level of suitability for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Energy Agency: Renewable energy outlook. In: World Energy Outlook 2012, pp. 211–240. IEA Publishing, Paris (2012)

  2. Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011)

    Article  Google Scholar 

  3. Timilisina, G.R., Shrestha, A.: How much hope should we have for biofuels? Energy 36, 2055–2069 (2011)

    Article  Google Scholar 

  4. Knothe, G.: Introduction: what is biodiesel? In: Knothe, G., van Gerpen, J., Krahl, J. (eds.) The Biodiesel Handbook. AOCS Press, Champaign, Illinois (2005)

    Chapter  Google Scholar 

  5. Antizar-Ladislao, B., Turrion-Gomez, J.L.: Second-generation biofuels and local bioenergy systems. Biofuels Bioprod. Bioref. 2, 455–469 (2008)

    Article  Google Scholar 

  6. Subramaniam, R., Dufreche, S., Zappi, M., Bajpai, R.: Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biotechnol. 37, 1271–1287 (2010)

    Article  Google Scholar 

  7. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M.: Biodiesel production from oleaginous microorganisms. Renew. Energy 34, 1–5 (2009)

    Article  Google Scholar 

  8. Hamelinck, C.N., Faaij, A.P.C.: Outlook for advanced biofuels. Energy Policy 34, 3268–3283 (2006)

    Article  Google Scholar 

  9. Ratledge, C., Cohen, Z.: Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 20, 155–160 (2008)

    Article  Google Scholar 

  10. Ratledge, C.: Single cell oils for the 21st century. In: Cohen, Z., Ratledge, R. (eds.) Single Cell Oils—Microbial and Algal Oils, 2nd edn, pp. 3–26. AOCS Press, Urbana, Illinois (2010)

    Google Scholar 

  11. Easterling, E.R., French, W.T., Hernandez, R., Licha, M.: The effect of glycerol as sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. 100, 356–361 (2009)

    Article  Google Scholar 

  12. Schneider, T., Graeff-Hönninger, S., French, W.T., Hernandez, R., Claupein, W., Holmes W.E., Merkt, N.: Screening of industrial wastewater as feedstock for microbial production of oils for biodiesel production and high-quality pigments. J. Combust. Article ID 153410 (2012)

  13. Schneider, T., Graeff-Hönninger, S., French, W.T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., Pham, P.: Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 61, 34–43 (2013)

    Article  Google Scholar 

  14. Yu, X., Zheng, Y., Dorgan, K.M., Chen, S.: Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140 (2011)

    Article  Google Scholar 

  15. Dai, C., Tao, J., Xie, F., Dai, Y., Zhao, M.: Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. Afr. J. Biotechnol. 6, 2130–2134 (2007)

    Google Scholar 

  16. Lopes da Silva, T., Feijao, D., Roseiro, J.C., Reis, A.: Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresour. Technol. 102, 2998–3006 (2011)

    Article  Google Scholar 

  17. Sun, Y., Cheng, J.: Hydrolysis for lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  18. Claassen, P.A.M., van Lier, J.B., Lopez Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., de Vries, S.S., Weusthius, R.A.: Utilization of biomass for the supply of energy carriers. Appl. Micobiol. Biotechnol. 52, 741–755 (1999)

    Article  Google Scholar 

  19. Mast, B., Merkt, N., Hernandez, R., French, W.T., Claupein, W., Graeff-Hönninger, S.: Characterization of different biomasses based on their sugar profile with focus on their utilization for microbial biodiesel production. Int. J. Green Energy. (2014). doi:10.1080/15435075.2014.888661

  20. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959)

    Article  Google Scholar 

  21. Zhang, G., French, W.T., Hernandez, R., Alley, E., Paraschivescu, M.: Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass Bioenergy 35, 734–740 (2011)

    Article  Google Scholar 

  22. Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D.D.Y., Bao, J.: Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl. Biochem. Biotechnol. 159, 591–604 (2009)

    Article  Google Scholar 

  23. Tao, J., Dai, C–.C., Yang, Q.-Y., Guan, Y.-J., Shao, W.-L.: Production of biodiesel with acid hydrolysate of Populus euramevicana CV leaves by Rhodotorula glutinis. Int. J. Green Energy 7, 387–396 (2010)

    Article  Google Scholar 

  24. Janda, S., Kotyk, A.: Some features of carbohydrate metabolism in Rhodotorula glutinis. Folia Microbiol. 17, 461–470 (1972)

    Article  Google Scholar 

  25. Papanikolaou, S., Aggelis, G.: Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 113, 1031–1051 (2011)

    Article  Google Scholar 

  26. Perrier, V., Dubreuqc, E., Galzy, P.: Fatty acid and carotenoid composition of Rhodotorula glutinis. Arch. Microbiol. 164, 173–179 (1995)

    Article  Google Scholar 

  27. Schneider, T., Rempp, T., Graeff-Hönninger, S., French, W.T., Hernandez, R., Claupein, W.: Utilization of soluble starch by oleaginous red yeast Rhodoturula glutinis. J. Sustain. Bioenergy Syst. 3, 57–63 (2013)

    Article  Google Scholar 

  28. Knothe, G.: Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Mast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mast, B., Zöhrens, N., Schmidl, F. et al. Lipid Production for Microbial Biodiesel by the Oleagenious Yeast Rhodotorula glutinis Using Hydrolysates of Wheat Straw and Miscanthus as Carbon Sources. Waste Biomass Valor 5, 955–962 (2014). https://doi.org/10.1007/s12649-014-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9312-9

Keywords

Navigation