Skip to main content

Advertisement

Log in

Optimization of Valorization of Biodegradable Kitchen Waste Biomass for Production of Fungal Cellulase System by Statistical Modeling

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study employs the use of combinatorial statistical approach for the optimization of media components for the enhanced production of complete cellulase system by Aspergillus niger C-5. Kitchen waste residue, a biodegradable fraction of municipal solid waste was used as a substrate for growth and production of complete fungal cellulase system under solid state fermentation conditions. A total of 23 media components affecting cellulase yields were first statistically screened employing a 2-level Plackett-Burman design model. Response surface methodology (RSM) was then used to optimize the concentration of most significant factors including tryptone, SDS, NH4Cl and NaCl affecting cellulase yields. The concentrations of four medium components that led to the maximum production of complete cellulase system as optimized using RSM were tryptone, 400 mg; SDS, 0.60 mg; NH4Cl, 2.5 mg; NaCl 1.50 mg/5 g of dry substrate. The optimization of medium components by combinatorial statistical approach led to the fine tuning of cellulase production thereby enhancing the activities of all components viz CMCase, FPase and β-glucosidase by 2.04, 1.58, 1.74 folds respectively exhibiting the highest yields of 110, 19 and 66 U/g dry substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009)

    Article  Google Scholar 

  2. Varrot, A., Frandsen, T.P., von Ossowski, I., Boyer, V., Cottaz, S., Driguez, H., Sculein, M., Davies, G.J.: Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11, 855–864 (2003)

    Article  Google Scholar 

  3. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A.: Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy. 34, 421–424 (2009)

    Article  Google Scholar 

  4. Lee, S.M., Koo, Y.M.: Pilot-scale production of cellulase using T. reesei rut C-30 in fed-batch mode. J. Microbial. Biotechnol. 11, 229–233 (2001)

    Google Scholar 

  5. Bhat, M.K.: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18, 355–383 (2000)

    Article  Google Scholar 

  6. Decker, C.H., Visser, J., Schreier, P.: β-Glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J. Agric. Food. Chem. 48, 4929–4936 (2000)

    Article  Google Scholar 

  7. Sohail, M., Siddiqi, R., Ahmad, A., Khan, S.A.: Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N. Biotechnol. 25, 437–441 (2009)

    Article  Google Scholar 

  8. Sherief, A.A., El Tanash, A.B., Atin, N.: Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Res. J. Microbiol. 5, 199–211 (2010)

    Article  Google Scholar 

  9. Bansal, N., Tewari, R., Soni, R., Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste. Manag. 32, 1341–1346 (2011)

    Article  Google Scholar 

  10. Sun, H., Ge, X., Hao, Z., Peng, M.: Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotechnol. 9, 163–166 (2010)

    Google Scholar 

  11. Chahal, D.S.: Solid-state fermentation with Trichoderma reesei for cellulase production. Appl. Environ. Microbiol. 56, 554–557 (1985)

    Google Scholar 

  12. Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Francis, F., Nagy, V., Szakacs, G., Pandey, A.: Coconut oil cake-a potential raw material for the production of α- amylase. Bioresour. Technol. 93, 169–174 (2000)

    Article  Google Scholar 

  13. Stevens, C.V., Verhe, R.: Renewable bioresources scope and modification for non-food application. In: Stevens C.V., Verhe R. (eds.) John Wiley and Sons Ltd., England, pp 46–71 (2004)

  14. Han, S.K., Shin, H.S.: Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen. Energy. 29, 569–577 (2004)

    Article  Google Scholar 

  15. Zhang, B., Zhang, L.L., Zhang, S.C., Shi, H.Z., Cai, W.M.: The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 26, 329–339 (2005)

    Article  Google Scholar 

  16. Janveja, C., Rana, S.S., Soni, S.K.: Environmentally acceptable management of kitchen waste residues by using them as substrates for the production of a cocktail of fungal carbohydrates. Int. J. Chem. Environ. Eng. Syst. 4, 20–29 (2013)

    Google Scholar 

  17. Haaland, P.D.: Statistical problem solving. In: Haaland, P.D. (ed.) Experimental design in biotechnology, pp. 1–18. Marcel Dekker Inc, New York (1989)

    Google Scholar 

  18. Berekaa, M.M., Abdel-Fattah, Y.R., El-Sayed, S.M., Borai, A.M.E.L., El Aassar, S.A.: Optimization of culture conditions for production of polyamide biopolymer (Polyglutamate) by Bacillus sp. strain Russian. J. Biol. Sci. 6, 687–694 (2006)

    Article  Google Scholar 

  19. Amani, M.D., Ahwany, A.S.: Xylanase production by Bacillus pumilus. Optimization by statistical and immobilization methods. Res. J. Agric. Biol. Sci. 3, 727–732 (2007)

    Google Scholar 

  20. Mandels, M., Andreotti, R.E., Roche, C.: Measurements of saccharifying cellulases. Biotechnol. Biophys. Symp. 6, 21–23 (1976)

    Google Scholar 

  21. Miller, G.L.: Use of DNS reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  22. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bansal, N., Tewari, R., Gupta, J.K., Soni, S.K., Soni, R.: A novel strain of Aspergillus niger producing a cocktail of industrial depolymerising enzymes for the production of second generation biofuels. BioResources 6, 552–569 (2011)

    Google Scholar 

  24. Deswal, D., Khasa, Y.P., Kuhad, R.C.: Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102, 6065–6072 (2011)

    Article  Google Scholar 

  25. Lee, S., Jang, Y., Lee, Y.M., Lee, J., Lee, H., Kim, G.H., Kim, J.J.: Rice straw-decomposing fungi and their cellulolytic and xylanolytic enzymes. J. Microbiol. Biotechnol. 21, 1322–1329 (2011)

    Article  Google Scholar 

  26. Alam, M.Z., Mamun, A.A., Qudsieh, I.Y., Muyibi, S.A., Salleh, H.M., Omar, N.M.: Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46, 61–64 (2009)

    Article  Google Scholar 

  27. Kim, S., Kim, C.H.: Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber. Bioprocess. Biosyst. Eng. 35, 61–67 (2012)

    Article  Google Scholar 

  28. Youssef, G.A., Bereka, M.M.: Improved production of endoglucanase enzyme by Aspergillus terreus; application of Plackett-burman design for optimization of process parameters. Biotechnology 8, 212–219 (2009)

    Article  Google Scholar 

  29. Nasab, M.M., Nasab, M.M.: Utilization of sugar beet pulp as a substrate for the fungal production of cellulase and bioethanol. Afr. J. Microbiol. Res. 4, 2556–2561 (2010)

    Google Scholar 

  30. Verma, N., Bansal, C.M., Kumar, V.: Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources 6, 1505–1519 (2011)

    Google Scholar 

  31. Mekala, N.K., Singhania, R.R., Sukumaran, R.K., Pandey, A.: Cellulase production under solid state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl. Biochem. Biotechnol. 151, 122–131 (2008)

    Article  Google Scholar 

  32. Jabasingh, A.S., Nachiyar, V.C.: Optimization of cellulase production by Aspergillus nidulans: application in the biosoftening of cotton fibers. World. J. Microbiol. Biotechnol. 27, 85–97 (2011)

    Article  Google Scholar 

  33. Huiping, L., Guoqun, Z., Shanting, N., Yiguo, L.: Technologic parameter optimization of gas quenching process using response surface method. Comput. Mater. Sci. 38, 561–570 (2007)

    Article  Google Scholar 

  34. Muthukumar, M., Mohan, D., Rajendran, M.: Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments. Cem. Concr. Compos. 25, 751–758 (2003)

    Article  Google Scholar 

  35. Stowe, R.A., Mayer, R.P.: Efficient screening of process variables. Ind. Eng. Chem. 58, 36–40 (1966)

    Article  Google Scholar 

  36. Singh, B., Sharma, H.K., Sarkar, B.C.: Optimization of extraction of antioxidants from wheat bran (Triticum spp.) using response surface methodology. J. Food. Sci. Technol. 49, 294–308 (2009)

    Article  Google Scholar 

  37. Zheng, Z.M., Hu, Q.L., Hao, J., Xu, F., Guo, N.N., Sun, Y., Liu, D.H.: Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumonia AC 15 via central composite design. Bioresour. Technol. 99, 1052–1056 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance provided by (1) Indian council of medical research (ICMR), New Delhi, India (2) Council of Scientific and Industrial Research (CSIR), in the form of Junior Research Fellowships to Ms. Chetna Janveja and Mr. Susheel Singh Rana respectively is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Soni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janveja, C., Rana, S.S. & Soni, S.K. Optimization of Valorization of Biodegradable Kitchen Waste Biomass for Production of Fungal Cellulase System by Statistical Modeling. Waste Biomass Valor 5, 807–821 (2014). https://doi.org/10.1007/s12649-014-9297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9297-4

Keywords

Navigation