Skip to main content

Advertisement

Log in

Fermentative Hydrogen Production from Carob Pod: A Typical Mediterranean Forest Fruit

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The carob-tree (Ceratonica siliqua L.) grows in arid to semi-arid Mediterranean areas and adapts well to poor soils. Carob pod, the fruit of carob tree is a sugar-rich biomass which may theoretically be ideal for biofuel production. During this study, the potential of hydrogen production from carob pod was evaluated in an anaerobic continuous stirred tank bioreactor using mixed microflora. A carob pod extract consisting of soluble carbohydrates at a concentration of 42.6 g/L was obtained from a standard extraction process. The reactor was operated at a hydraulic retention time (HRT) of 36 and 18 h and an organic loading rate of 155.8 and 311.6 mmol glucose/L/days respectively. The results showed a maximum hydrogen production yield of 8.4 L H2 per kg of carob pod biomass or 0.43 mmol H2 per mmol glucose consumed at the HRT of 18 h. Butyric acid was found to be the dominant metabolic product at both examined HRTs while propionic acid production decreased as HRT decreased. The present work suggests that carob tree, an alternative dryland forest crop, can be utilized for the efficient production of biohydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Battle, I., Tous, J.: Carob Tree (Ceratonia siliqua L.) International Plant Genetic Resources Institute. Via delle Sette Chiese 142 00145 Rome, Italy (1997)

  2. Puhan, Z., Wielinga, M.W.: Products Derived from Carob Pods with Particular Emphasis on Carob Bean Gum (CBG). Report Technical Committee of INEC (1996)

  3. Sánchez-Segado, S., Lozano, L.J., De Juan García, D., Godínez, C., De Los Ríos, A.P., Hernández-Fernández, F.J.: Life cycle assessment analysis of ethanol production from carob pod. Chem. Eng. Trans. 21, 613–618 (2010)

    Google Scholar 

  4. Parrado, J., Bautista, J., Romero, E.J., García-Martínez, A.M., Friaza, V., Tejada, M.: Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresour. Technol. 99, 2312–2318 (2008)

    Article  Google Scholar 

  5. Roukas, T.: Ethanol production from carob pods by Saccharomyces cerevisiae. Food Biotechnol. 7, 159–176 (1993)

    Article  Google Scholar 

  6. Vourdoubas, J., Makris, D., Kefalas, P., Kaliakatsos, J.: Studies on the production of bioethanol from carob, in the 12th European conference on biomass, Amsterdam, 17–21/6/02, pp 489–491 (2002)

  7. Turhan, I., Bialka, K.L., Demirci, A., Karhan, M.: Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour. Technol. 101, 5290–5296 (2010)

    Article  Google Scholar 

  8. Sanchez-Segado, S., Lozano, L.J., Rios, A.P., Hernandez-Fernandez, F.J., Godinez, C., Juan, D.: Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock. Bioresour. Technol. 104, 324–328 (2012)

    Article  Google Scholar 

  9. Ercan, Y., Irfan, T., Mustafa, K.: Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour. Technol. 135, 365–371 (2013)

    Article  Google Scholar 

  10. Winter, C.J.: Hydrogen energy-abundant, efficient, clean: a debate over the energy-system-of-change. Int. J. Hydrog. Energy 34, S1–S52 (2009)

    Article  Google Scholar 

  11. Martinez-Pérez, N., Cherryman, S.J., Premier, G.C., Dinsdale, R.M., Hawkes, D.L., Hawkes, F.R., Kyazze, G., Kyazze, A.J.: The potential for hydrogen enriched biogas production from crops: scenarios in the UK. Biomass Bioenergy 31, 95–104 (2007)

    Article  Google Scholar 

  12. Mariakakis, I., Bischoff, P., Krampe, J., Meyer, C., Steinmetz, H.: Effect of organic loading rate and solids retention time on microbial population during bio-hydrogen production by dark fermentation in large lab-scale. Int. J. Hydrog. Energy 36, 10690–10700 (2011)

    Article  Google Scholar 

  13. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz. 1, 21–39 (2010)

    Article  Google Scholar 

  14. Jung, W.W., Kim, D.H., Kim, S.H., Shin, H.S.: Bioreactor design for continuous dark fermentative hydrogen production. Bioresour. Technol. 102, 8612–8620 (2011)

    Article  Google Scholar 

  15. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrog. Energy 34, 799–811 (2009)

    Article  Google Scholar 

  16. Bakonyi, P., Nemestothy, N., Belafi-Bako, K.: Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrog. Energy 38, 9673–9687 (2013)

    Article  Google Scholar 

  17. Durbin, D.J., Malardier-Jugroot, C.: Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrog. Energy 38, 14595–14617 (2013)

    Article  Google Scholar 

  18. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Angelopoulos, K., Lyberatos, G.: Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 99, 110–119 (2008)

    Article  Google Scholar 

  19. APHA: Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington DC, USA (1995)

  20. Josefsson, B.: Rapid spectrophotometric determination of total carbohydrates. In: Grasshoff, K., Ehrhardt, M., Kremling, K. (eds). Methods of Seawater Analysis, pp. 340–342. Verlag Chemie GmbH, Weinheim, Germany (1983)

  21. Fang, H.H.P., Liu, H., Zhang, T.: Characterization of a hydrogen-producing granular sludge. Biotechnol. Bioeng. 78, 44–52 (2002)

    Article  Google Scholar 

  22. Mu, Y., Yu, H.Q., Wang, Y.: The role of pH in the fermentative H2 production from an acidogenic granule-based reactor. Chemosphere 64, 350–358 (2006)

    Article  Google Scholar 

  23. Zhao, Q.B., Yu, H.Q.: Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values. Bioresour. Technol. 99, 1299–1353 (2008)

    Google Scholar 

  24. Venetsaneas, N., Antnopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G.: Using cheese whey for hydrogen and methane generation in a two stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100, 3713–3717 (2009)

    Article  Google Scholar 

  25. Zhang, Z.P., Show, K.Y., Tay, J.H., Liang, D.T., Lee, D.J., Jiang, W.J.: Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Biotechnol. Bioeng. 96, 1040–1050 (2007)

    Article  Google Scholar 

  26. Jung, K.W., Kim, D.H., Shin, H.S.: Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int. J. Hydrog. Energy 35, 13370–13378 (2010)

    Article  Google Scholar 

  27. Arooj, M.F., Han, S.K., Kim, D.H., Shin, H.S.: Sludge characteristics in anaerobic SBR system producing hydrogen gas. Water Res. 41, 1177–1184 (2007)

    Article  Google Scholar 

  28. Tapia-Venegas, E., Ramirez, J.E., Donoso-Bravo, A., Jorquera, L., Steyer, J.P., Ruiz-Filippi, G.: Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor. Int. J. Hydrog. Energy 38, 2185–2190 (2013)

    Article  Google Scholar 

  29. Liu, C.Z., Cheng, X.Y.: Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int. J. Hydrog. Energy 35, 8945–8952 (2010)

    Article  Google Scholar 

  30. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G.: Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrog. Energy 36, 4843–4851 (2011)

    Article  Google Scholar 

  31. Lo, Y.C., Lu, W.C., Chen, C.Y., Chang, J.S.: Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol. 101, 5885–5891 (2010)

    Article  Google Scholar 

  32. Kim, M.S., Lee, D.Y.: Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour. Technol. 101, 48–52 (2010)

    Article  Google Scholar 

  33. Ozgur, E., Mars, A., Peksel, B., Lowerse, A., Afsar, N., Vrije, T., Yücel, M., Gündüz, U., Claassen, P., Eroglu, I.: Biohydrogen production from beet molasses by sequential dark and photofermentation. Int. J. Hydrog. Energy 35, 511–517 (2010)

    Article  Google Scholar 

  34. Fang, H.H.P., Liu, H.: Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93 (2002)

    Article  Google Scholar 

  35. Gavala, H.N., Skiadas, I.V., Ahring, B.K.: Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int. J. Hydrog. Energy 31, 1164–1175 (2006)

    Article  Google Scholar 

  36. Van Ginkel, S., Sung, S., Lay, J.J.: Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001)

    Article  Google Scholar 

  37. Azbar, N., Dokgoz, F.T.C., Ksekin, T., Korkmaz, K.S., Syed, H.M.: Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrog. Energy 34, 7441–7447 (2009)

    Article  Google Scholar 

  38. Abreu, A.A., Danko, A.S., Costa, J.C., Ferreira, E.C., Alves, M.M.: Inoculum type response to different pHs on biohydrogen production from L-arabinose, a component of hemicellulosic biopolymers. Int. J. Hydrog. Energy 34, 1744–1751 (2009)

    Article  Google Scholar 

  39. Cohen, A., Distel, B., Van Deursen, A., Breure, A.M., Van Andel, J.G.: Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply. Antonie Van Leeuwenhock 51, 179–192 (1985)

    Article  Google Scholar 

  40. Ramirez-Morales, J.E., Tapia-Venegas, E., Nemestothy, N., Bakonyi, P., Belafi-Bako, K., Ruiz-Filippi, G.: Evaluation of two gas membrane modules for fermentative hydrogen separation. Int. J. Hydrog. Energy 38, 14042–14052 (2013)

    Article  Google Scholar 

  41. Zhang, F., Zhang, Y., Chen, M., Zeng, J.: Hydrogen supersaturation in thermophilic mixed culture fermentation. Int. J. Hydrog. Energy 37, 17809–17816 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Simatos Stelios and Ieronimakis Giorgos for their help and involvement in the completion of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Fountoulakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fountoulakis, M.S., Dokianakis, S.N., Daskalakis, G. et al. Fermentative Hydrogen Production from Carob Pod: A Typical Mediterranean Forest Fruit. Waste Biomass Valor 5, 799–805 (2014). https://doi.org/10.1007/s12649-014-9295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9295-6

Keywords

Navigation