Skip to main content
Log in

Predicting Melt Formation and Agglomeration in Fluidized Bed Combustors by Equilibrium Calculations

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Thermal valorization of biomass or waste in a fluidized bed combustor may result in agglomeration of the bed material, coated with ash, potentially causing defluidization. In this paper, the causes of agglomeration for various fuels are critically reviewed, based on thermodynamic grounds. It is shown that even for phosphorus rich biomass types, in most cases the largest melt phase consists of alkali silicates: Ca phosphates are formed instead of Ca silicates, leading to lower melting points in the CaO–K2O–SiO2 system. Although thermodynamic optimization of the four main ash forming elements (K, Ca, Si and P) only provides an estimate of the amount of melt phase, it is shown that for various fuels the agglomeration behavior can be explained consistent with experimental findings from literature. As a consequence, for most biomass and waste types a similar thermodynamic estimation can be made to predict agglomeration problems and incorporate countermeasures in the design and operation of the fluidized bed combustor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Visser, H.J.M., van Lith, S., Kiel, J.H.A.: Biomass ash-bed material interactions leading to agglomeration in fluidized bed combustion and gasification. In: Contributions ECN biomass to the “12th European conference and technology exhibition on biomass for energy, industry and climate protection”. ECN-RX-02-014 (2002)

  2. Brus, E., Öhman, M., Nordin, A.: Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels. Energy Fuels 19, 825–832 (2005)

    Article  Google Scholar 

  3. Öhman, M., Pommer, L., Nordin, A.: Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels. Energy Fuels 19, 1742–1748 (2005)

    Article  Google Scholar 

  4. Yan, R., Liang, D.T., Laursen, K., Li, Y., Tsen, L., Tay, J.H.: Formation of bed agglomeration in a fluidized multi-waste incinerator. Fuel 82, 843–851 (2003)

    Article  Google Scholar 

  5. Zevenhoven-Onderwater, M., Backman, R., Skrifvars, B.-J., Hupa, M.: The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the ash chemistry of melting ashes and ash-bed material interaction. Fuel 80(10), 1489–1502 (2001)

    Article  Google Scholar 

  6. Lindberg, D., Backman, R., Chartrand, P., Hupa, M.: Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—current situation and future developments. Fuel Process. Technol. 105, 129–141 (2013)

    Article  Google Scholar 

  7. Nielsen, H.P., Baxter, L.L., Sclippab, G., Morey, C., Frandsen, F.J., Dam-Johansen, K.: Deposition of potassium salts on heat transfer surfaces in straw-fired boilers: a pilot-scale study. Fuel 79, 131–139 (2000)

    Article  Google Scholar 

  8. Xiong, S., Öhman, M., Zhang, Y., Lestander, T.: Corn stalk ash composition and its melting (slagging) behavior during combustion. Energy Fuels 24, 4866–4871 (2010)

    Article  Google Scholar 

  9. Skrifvars, B.-J., Backman, R., Hupa, M.: Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations. Fuel Process. Technol. 56, 55–67 (1998)

    Article  Google Scholar 

  10. Scala, F., Chirone, R.: An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels. Biomass Bioenergy 32, 252–266 (2008)

    Article  Google Scholar 

  11. Chaivatamaset, P., Sricharoon, P., Tia, S.: Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed. Appl. Thermal Eng. 31, 2916–2927 (2011)

    Article  Google Scholar 

  12. Chunjiang, Y., Jianguang, Q., Hu, N., Mengxiang, F., Zhongyang, L.: Experimental research on agglomeration in straw-fired fluidized beds. Appl. Energy 88, 4534–4543 (2011)

    Article  Google Scholar 

  13. Liliedahl, T., Sjöström, K., Engvall, K., Rosén, C.: Defluidisation of fluidised beds during gasification of biomass. Biomass Bioenergy 35, S63–S70 (2011)

    Article  Google Scholar 

  14. Grimm, A., Skoglund, N., Boström, D., Boman, C., Öhman, M.: Influence of phosphorus on alkali distribution during combustion of logging residues and wheat straw in a bench-scale fluidized bed. Energy Fuels 26, 3012–3023 (2012)

    Article  Google Scholar 

  15. Lindström, E., Sandström, M., Boström, D., Öhman, M.: Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels 21, 710–717 (2007)

    Article  Google Scholar 

  16. Jordan, C.A., Akay, G.: Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse. Fuel 91, 253–263 (2012)

    Article  Google Scholar 

  17. Mettanant, V., Basu, P., Butler, J.: Agglomeration of biomass fired fluidized bed gasifier and combustor. Can. J. Chem. Eng. 87, 656–684 (2009)

    Article  Google Scholar 

  18. Arvelakis, S., Vourliotis, P., Kakaras, E., Koukios, E.G.: Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass Bioenergy 20, 459–470 (2001)

    Article  Google Scholar 

  19. Grimm, A., Skoglund, N., Boström, D., Öhman, M.: Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuels 25, 937–947 (2011)

    Article  Google Scholar 

  20. Boström, D., Skoglund, N., Grimm, A., Boman, C., Öhman, M., Broström, M., Backman, R.: Ash transformation chemistry during combustion of biomass. Energy Fuels 26, 85–93 (2012)

    Article  Google Scholar 

  21. Koorneef, J., Junginger, M., Faaij, A.: Development of fluidized bed combustion: an overview of trends, performance and cost. Prog. Energy Combust. Sci. 33, 19–55 (2007)

    Article  Google Scholar 

  22. Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 96–102 (2008)

    Article  Google Scholar 

  23. Van Caneghem, J., Brems, A., Lievens, P., Block, C., Billen, P., Vermeulen, I., Dewil, R., Baeyens, J., Vandecasteele, C.: Fluidized bed waste incinerators: design, operational and environmental issues. Prog. Energy Combust. Sci. 38(4), 551–582 (2012)

    Article  Google Scholar 

  24. Hupa, M.: Ash-related issues in fluidized-bed combustion of biomasses: recent research highlights. Energy Fuels 26, 4–14 (2012)

    Article  Google Scholar 

  25. Vermeulen, I., Van Caneghem, J., Block, C., Van Brecht, A., Wauters, G., Vandecasteele, C.: Energy recovery from heavy ASR by co-incineration in a fluidized bed combustor. Clean Technol. Environ. Policy 14, 1003–1011 (2012)

    Article  Google Scholar 

  26. Billen, P., Costa, J., Van Caneghem, J., Vandecasteele, C.: Electricity from poultry manure: a clean alternative to direct land application. In: Giannetti, B., Almeida, C., Agostinho, F., Bonilla, S. (eds.) Advances in cleaner production, proceedings of the 4th international workshop, UNIP, São Paulo, Brazil. May 22–24 (2013). Also submitted to The Journal of Cleaner Production

  27. Lynch, D., Henihan, A.M., Bowen, B., Lynch, D., McDonnell, K., Kwapinsky, W., Leahy, J.J.: Utilisation of poultry litter as an energy feedstock. Biomass Bioenergy 49, 197–204 (2013)

    Article  Google Scholar 

  28. Eriksson, G., Grimm, A., Skoglund, N., Boström, D., Öhman, M.: Combustion and fuel characterization of wheat distillers dried grain with solubles (DDGS) and possible combustion applications. Fuel 102, 208–220 (2012)

    Article  Google Scholar 

  29. Öhman, M., Nordin, A., Lundholm, K., Boström, D.: Ash transformations during combustion of meat-bonemeal, and RDF in a (bench-scale) fluidized bed combustor. Energy Fuels 17, 1153–1159 (2003)

    Article  Google Scholar 

  30. Vamvuka, D., Zografos, D.: Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 83, 2051–2057 (2004)

    Article  Google Scholar 

  31. Silvennoinen, J., Hedman, M.: Co-firing of agricultural fuels in a full-scale fluidized bed boiler. Fuel Process. Technol. 105, 11–19 (2013)

    Article  Google Scholar 

  32. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., van Ommen, J.R.: Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog. Energy Combust. Sci. 34, 633–666 (2008)

    Article  Google Scholar 

  33. Öhman, M., Nordin, A.: The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy Fuels 14(3), 618–624 (2000)

    Article  Google Scholar 

  34. Wang, G., Shen, L., Sheng, C.: Characterization of biomass ashes from power plant firing agricultural residues. Energy Fuels 26, 102–111 (2012)

    Article  Google Scholar 

  35. Sorell, G.: The role of chlorine in high temperature corrosion in waste-to-energy plants. Mater. High Temp. 14(3), 207–220 (1997)

    Google Scholar 

  36. Theis, M., Skrifvars, B.-J., Zevenhoven, M., Hupa, M., Tran, H.: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: deposit chemistry. Fuel 85, 1992–2001 (2006)

    Article  Google Scholar 

  37. Levin, E.M., Robbins, C.R., McMurdie, H.F.: Phase diagrams for ceramists, vol. 1. The American Ceramic Society, Columbus Ohio (1964)

    Google Scholar 

  38. Roedder, E.: Silicate melt systems. Phys. Chem. Earth 3, 224–297 (1959)

    Article  Google Scholar 

  39. Jung, I.-H., Decterov, S.A., Pelton, A.D.: Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Eur. Ceram. Soc. 25, 313–333 (2005)

    Article  Google Scholar 

  40. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A.D., Petersen, S.: FactSage thermochemical software and databases. Calphad 26(2), 189–228 (2002)

    Article  Google Scholar 

  41. Sandström, M.H., Boström, D., Rosén, E.: Determination of standard Gibbs free energy of formation for Ca2P2O7 and Ca(PO3)2 from solid-state EMF measurements using yttria stabilised zirconia as solid electrolyte. J. Chem. Thermodyn. 38, 1371–1376 (2006)

    Article  Google Scholar 

  42. Sandström, M.H., Boström, D.: Determination of standard Gibbs free energy of formation for CaKPO4, CaK4(PO4)2, CaK2P2O7 and Ca10K(PO4)7 from solid-state e.m.f. measurements using yttria stabilised zirconia as solid electrolyte. J. Chem. Thermodyn. 40, 40–46 (2008)

    Article  Google Scholar 

  43. Sandström, M., Boström, D, Nordin, A.: Phases of relevance for ash formation during thermal processing of biomass and sludges: review of thermodynamic data, phase transition and crystal structures in the system CaO–K2O–P2O5. 2nd World conference on biomass for energy, industry and climate protection, 10–14 May, Rome, pp. 1454–1457 (2004)

  44. Bourgel, C., Véron, E., Poirier, J., Defoort, F., Seiler, J.-M., Peregrina, C.: Behavior of phosphorus and other inorganics during the gasification of sewage sludge. Energy Fuels 25, 5707–5717 (2011)

    Article  Google Scholar 

  45. Allendorf, M.D., Spear, K.E.: Thermodynamic analysis of silica refractory corrosion in glass-melting furnaces. J. Electrochem. Soc. 148(2), B59–B67 (2001)

    Article  Google Scholar 

  46. Holland, T.J.B., Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorphic Geol. 16, 309–343 (1998)

    Article  Google Scholar 

  47. Jung, I.H., Hudon, P.: Thermodynamic assessment of P2O5. J. Am. Ceram. Soc. 95(11), 3665–3672 (2012)

    Article  Google Scholar 

  48. Haas, J.L., Robinson, G.R., Hemingway, B.S.: Thermodynamic tabulations for selected phases in the system CaO–Al2O3–SiO2–H2O at 101.325 kPa (1 atm) between 273.15 and 1800 K. J. Phys. Chem. Ref. Data 10(3), 575–669 (1981)

    Article  Google Scholar 

  49. Pandit, S.S., Jacob, K.T.: Thermodynamic properties of magnesium phosphate (Mg3P2O8)—Correction of data in recent compilations. Metall. Mater. Trans. A 24A, 225–227 (1995)

    Article  Google Scholar 

  50. Sandström, M.: Structural and solid state EMF studies of phases in the CaO–K2O–P2O5 system with relevance for biomass combustion. PhD thesis, Umeå Universitet, Umeå, Sweden (2006)

  51. Nagai, T., Tanaka, Y., Maeda, M.: Thermodynamic measurement of di-calcium phosphate. Metall. Mater. Trans. B 42B, 685–691 (2011)

    Article  Google Scholar 

  52. O’Donnell, M.D., Watts, S.J., Law, R.V., Hill, R.G.: Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties: part II: physical properties. J. Non Cryst. Solids 354, 3561–3566 (2008)

    Article  Google Scholar 

  53. Toplis, M.J., Libourel, G., Carroll, M.R.: The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim. Cosmochim. Acta 58(2), 797–810 (1994)

    Article  Google Scholar 

  54. Liu, S.J., Zhang, Y.F., He, W., Yue, Y.Z.: Transparant phosphosilicate glasses containing crystals formed during cooling of melts. J. Non Cryst. Solids 357, 3897–3900 (2011)

    Article  Google Scholar 

  55. Visser, H.J.M., van Lith, S.C., Kiel, J.H.A.: Biomass ash-bed material interactions leading to agglomeration in FBC. J. Energy Res. Technol. 130, 1–6 (2008)

    Article  Google Scholar 

  56. Tranvik, A.C., Öhman, M., Sanati, M.: Bed material deposition in cyclones of wood fuel fired circulating fluidized beds (CFBs). Energy Fuels 21, 104–109 (2007)

    Article  Google Scholar 

  57. Zevenhoven-Onderwater, M., Backman, R., Skrifvars, B.-J., Hupa, M., Liliendahl, T., Rosén, C., Sjöström, K., Engvall, K., Hallgren, A.: The ash chemistry in fluidised bed gasification of biomass fuels. Part II: ash behaviour prediction versus bench scale agglomeration tests. Fuel 80, 1503–1512 (2001)

    Article  Google Scholar 

  58. Pettersson, A., Niklasson, F., Moradian, F.: Reduced bed temperature in a commercial waste to energy boiler: impact on ash and deposit formation. Fuel Process. Technol. 105, 28–39 (2013)

    Article  Google Scholar 

  59. Abelha, P., Gulyurtlu, I., Boavida, D., Seabra Barros, J., Cabrita, I., Leahy, J., Kelleher, B., Leahy, M.: Combustion of poultry litter in a fluidised bed combustor. Fuel 82, 687–692 (2003)

    Article  Google Scholar 

  60. Vuthaluru, H.B., Zhang, D.K.: Remediation of ash problems in fluidised-bed combustors. Fuel 80, 583–598 (2001)

    Article  Google Scholar 

  61. Davidsson, K.O., Åmand, L.-E., Steenari, B.-M., Elled, A.-L., Eskilsson, D., Leckner, B.: Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler. Chem. Eng. Sci. 63, 5314–5329 (2008)

    Article  Google Scholar 

  62. Vuthaluru, H.B., Domazetis, G., Wall, T.F., Vleeskens, J.M.: Reducing fly ash deposition by pretreatment of brown coal: effect of aluminium on ash character. Fuel Process. Technol. 46, 117–132 (1996)

    Article  Google Scholar 

  63. Miller, S.F., Miller, B.G.: The occurrence of inorganic elements in various biofuels and its effect on ash chemistry and behavior and use in combustion products. Fuel Process. Technol. 88, 1155–1164 (2007)

    Article  Google Scholar 

  64. Kuo, J.H., Wey, M.Y., Lin, C.L., Chiu, H.M.: The effect of aluminium inhibition on the defluidization behavior and generation of pollutants in fluidized bed incineration. Fuel Process. Technol. 89, 1227–1236 (2008)

    Article  Google Scholar 

  65. Olofsson, G., Ye, Z., Bjerle, I., Andersson, A.: Bed agglomeration problems in fluidized bed biomass combustion. Ind. Eng. Chem. Res. 41, 2888–2894 (2002)

    Article  Google Scholar 

  66. Sun, Z., Baosheng, J., Mingyao, Z., Liu, R.: Cotton stalk combustion in a circulating fluidized bed. Chem. Eng. Technol. 31(11), 1605–1614 (2008)

    Article  Google Scholar 

  67. Steenari, B.M., Lindqvist, O.: High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14(1), 67–76 (1998)

    Article  Google Scholar 

  68. Davidsson, K.O., Steenari, B.M., Eskilsson, D.: Kaolin addition during biomass combustion in a 35 MW circulating fluidized-bed boiler. Energy Fuels 21, 1959–1966 (2007)

    Article  Google Scholar 

  69. Khalil, R.A., Todorovic, D., Skreiberg, Ø., Becidan, M., Backman, R., Goile, F., Sørum, L.: The effect of kaolin on the combustion of demolition wood under well-controlled conditions. Waste Manag. Res. 30(7), 672–680 (2012)

    Article  Google Scholar 

  70. Barišić, V., Åmand, L.E., Zabetta, E.C.: The role of limestone in preventing agglomeration and slagging during CFB combustion of high-phosphorus fuels. World Bioenergy 2008, Jönköping, Sweden, May 27–29th (2008)

  71. Pettersson A.: Characterization of fuels and fly ashes from co-combustion of biofuels and waste fuels in a fluidized bed boiler. A phosphorus and alkali perspective. PhD Thesis, Chalmers University of Technology, Göteborg, Sweden and University College of Borås, Borås, Sweden (2008)

  72. Suoto, M.A., Rodriguez, J.C., Conde-Pumpido, R., Guitián, F., Gonzalez, J.F., Perez, J.: Formation of solid deposits in the gas circuit of a pressurized fluidized bed combustion plant. Fuel 75(6), 675–680 (1996)

    Article  Google Scholar 

  73. Pelton, A.D., Bale, C.W., Lin, P.L.: Calculation of phase diagrams and thermodynamic properties of 14 additive and reciprocal ternary systems containing Li2CO3, Na2CO3, K2CO3, Li2SO4, Na2SO4, K2SO4, LiOH, NaOH and KOH. Can. J. Chem. 62, 457–474 (1984)

    Article  Google Scholar 

  74. Du, H.: Thermodynamic assessment of the K2SO4–Na2SO4–MgSO4–CaSO4 system. J. Phase Equilib. 21(1), 6–18 (2000)

    Article  Google Scholar 

  75. Zabetta, E.C., Barišić, V., Peltola, K., Hotta, A.: Foster Wheeler experience with biomass and waste in CFBs. 33rd Clearwater conference, Clearwater, Florida, USA, June 1–5 (2008)

  76. Martin, J.D., Smyrniotis, C.R., Schulz, K.W., Sun, W.H., Bohlen, S.K., Brewer, G.: Process for slag and corrosion control in boilers. United States Patent No.: US 7,845,292 B2 (2010)

  77. Kassman, H.: Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers. PhD thesis, Chalmers University of Technology, Gothenborg, Sweden (2012)

  78. Kassman, H., Broström, M., Berg, M., Åmand, L.-E.: Measures to reduce chlorine in deposits: application in a large-scale circulating fluidised bed boiler firing biomass. Fuel 90, 1325–1334 (2011)

    Article  Google Scholar 

  79. Becidan, M., Sørum, L., Frandsen, F., Pedersen, A.J.: Corrosion in waste-fired boilers: a thermodynamic study. Fuel 88, 595–604 (2009)

    Article  Google Scholar 

  80. Broström, M., Kassman, H., Helgesson, A., Berg, M., Anderson, C., Backman, R., Nordin, A.: Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler. Fuel Process. Technol. 88, 1171–1177 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The support of BMC Moerdijk (The Netherlands) to this research is gratefully acknowledged. The work of master student Benji Creemers contributed to this review paper. Thomas Suetens and Bart Blanpain are acknowledged for the help with the use of the FactSage program at the MTM department of KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Billen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billen, P., Van Caneghem, J. & Vandecasteele, C. Predicting Melt Formation and Agglomeration in Fluidized Bed Combustors by Equilibrium Calculations. Waste Biomass Valor 5, 879–892 (2014). https://doi.org/10.1007/s12649-013-9285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9285-0

Keywords

Navigation