Skip to main content

Advertisement

Log in

Recovery of Arsenic Trioxide from a Sludge-Like Waste by Alkaline Leaching and Acid Precipitation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Arsenic-containing industrial wastes contain high levels of hazardous arsenic compounds, for which proper pollution control and resource recovery is a high priority and a matter of great urgency. In this study, a process that combines alkaline leaching and acid precipitation was investigated with a view to extracting and recovering arsenic from the sludge-like waste generated during phosphoric acid production, as well as reducing the quantity of the waste to be disposed. The effects of NaOH concentration, liquid-to-solid (L/S) ratio, and extraction time on arsenic leaching were studied. Results indicated that 98.7 % of arsenic could be extracted from the waste when it was leached for 100 min using a NaOH solution of 1.875 mol/L, and a L/S ratio of 8 L/kg. The solid residue accounted for only 5.6 % of the raw waste, suggesting a significant reduction of the quantity requiring safe disposal. Arsenic trioxide was recovered from the alkaline leachate by acid precipitation, at an optimal H2SO4/arsenic ratio of 1.9 mol/mol; after washing with diluted acid, the purity of arsenic trioxide reached 93.4 % and the total recovery ratio of arsenic was 79 %. This relatively simple process was found to be an effective method for arsenic removal and recovery from the sludge-like waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jones, F.T.: A broad view of arsenic. Pollut. Sci. 86, 2–14 (2007)

    Google Scholar 

  2. Leist, M., Casey, R.J., Caridi, D.: The management of arsenic wastes: problems and prospects. J. Hazard. Mater. 76, 125–138 (2000)

    Article  Google Scholar 

  3. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    Article  Google Scholar 

  4. Bhattacharya, P., Welch, A.H., Stollenwerk, K.G., McLaughlin, M.J., Bundschuh, J., Panaullah, G.: Arsenic in the environment: biology and chemistry. Sci. Total Environ. 379, 109–120 (2007)

    Article  Google Scholar 

  5. Shibayama, A., Takasaki, Y., William, T., Yamatodani, A., Higuchi, Y., Sunagawa, S., Ono, E.: Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process. J. Hazard. Mater. 181, 1016–1023 (2010)

    Article  Google Scholar 

  6. Xiao, X.Y., Chen, T.B., Liao, X.Y., Wu, B., Yan, X.L., Zhai, L.M., Xie, H., Wang, L.X.: Regional distribution of arsenic contained minerals and arsenic pollution in China. Geogr. Res. 27, 201–212 (2008). In Chinese

    Google Scholar 

  7. Ettler, V., Mihaljevič, M., Šebek, O.: Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues. Waste Manage. Res. 28, 587–595 (2010)

    Article  Google Scholar 

  8. Krysiak, A., Karczewska, A.: Arsenic extractability in soils in the areas of former arsenic mining and smelting. SW Poland. Sci. Total Environ. 379, 190–200 (2007)

    Article  Google Scholar 

  9. Cornelis, G., Poppe, S., Gerven, T.V., Van den Broeck, E., Ceulemans, M., Vandecasteel, C.: Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals. J. Hazard. Mater. 159, 271–279 (2008)

    Article  Google Scholar 

  10. Ghosh, A., Sáez, A.E., Ela, W.: Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Sci. Total Environ. 363, 46–59 (2006)

    Article  Google Scholar 

  11. Vandecasteele, C., Dutré, V., Geysen, D., Wauters, G.: Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manage. 22, 143–146 (2002)

    Article  Google Scholar 

  12. Kim, J.-Y., Davis, A.P., Kim, K.-W.: Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol. 37, 189–195 (2003)

    Article  Google Scholar 

  13. Kumpiene, J., Lagerkvist, A., Maurice, C.: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage. 28, 215–225 (2008)

    Article  Google Scholar 

  14. Camacho, J., Wee, H.-Y., Kramer, T.A., Autenrieth, R.: Arsenic stabilization on water treatment residuals by calcium addition. J. Hazard. Mater. 165, 599–603 (2009)

    Article  Google Scholar 

  15. Jing, C., Korfiatis, G.P., Meng, X.: Immobilization mechanism of aresenate in iron hydroxide sludge stabilized with cement. Environ. Sci. Technol. 37, 5050–5056 (2003)

    Article  Google Scholar 

  16. Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L.: Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 31, 315–320 (1997)

    Article  Google Scholar 

  17. Hsia, T.-H., Lo, S.-L., Lin, C.-F., Lee, D.-Y.: Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloids Surf. A physicochem. Eng. Aspects 85, 1–7 (1994)

    Article  Google Scholar 

  18. Moon, D.H., Dermatas, D., Menounou, N.: Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci. Total Environ. 330, 171–185 (2004)

    Article  Google Scholar 

  19. Bothe, J.V., Brown, P.W.: Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 33, 3806–3811 (1999)

    Article  Google Scholar 

  20. Hu, L.F., Feng, H.-J., Wu, Y.-Y., Long, Y.-Y., Wang, J., Shen, D.-S.: A comparative study on stabilization of available as in highly contaminated hazardous solid waste. J. Hazard. Mater. 174, 194–201 (2010)

    Article  Google Scholar 

  21. Magalhães, M.C.F.: Arsenic. An environmental problem limited by solubility. Pure Appl. Chem. 74, 1843–1850 (2002)

    Article  Google Scholar 

  22. Tongamp, W., Takasaki, Y., Shibayama, A.: Precipitation of arsenic as Na3AsS4 from Cu3AsS4-NaHS-NaOH leach solutions. Hydrometallurgy 105, 42–46 (2010)

    Article  Google Scholar 

  23. Fernández-Jiménez, A., Palomo, A.: Fixing arsenic in alkali-activated cementitious matrices. J. Am. Ceram. Soc. 88, 1122–1126 (2005)

    Article  Google Scholar 

  24. Kim, J.-W., Jung, M.C.: Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag. Environ. Geochem. Health 33, 151–158 (2011)

    Article  Google Scholar 

  25. Shaw, J.K., Fathordoobadi, S., Zelinski, B.J., Ela, W.P., Sáez, A.E.: Stabilization of arsenic-bearing solid residuals in polymeric matrices. J. Hazard. Mater. 152, 1115–1121 (2008)

    Article  Google Scholar 

  26. Singh, T.S., Pant, K.K.: Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. B131, 29–36 (2006)

    Article  Google Scholar 

  27. Meng, X.G., Korfiatis, G.P., Jing, C.Y., Christodoulatos, C.: Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction. Environ. Sci. Technol. 35, 3476–3481 (2001)

    Article  Google Scholar 

  28. Itakura, T., Sasai, R., Itoh, H.: Arsenic recovery from water containing arsenite and arsenate ions by hydrothermal mineralization. J. Hazard. Mater. 146, 328–333 (2007)

    Article  Google Scholar 

  29. Luo, T., Cu, J., Hu, S., Huang, Y., Jing, C.: Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol. 44, 9094–9098 (2010)

    Article  Google Scholar 

  30. Turygin, V.V., Smirnov, M.K., Smetanin, A.V., Zhukov, E.G., Fedorov, V.A., Tomilov, A.P.: Electrochemical arsenic extraction from nonferrous metals industry waste. Inorg. Mater. 44, 946–953 (2008)

    Article  Google Scholar 

  31. Filippou, D., St-Germain, P., Grammatikopoulos, T.: Recovery of metal values from copper-arsenic minerals and other related resources. Miner. Processing Extr. Metall. Rev. 28, 247–298 (2007)

    Article  Google Scholar 

  32. Janin, A., Zaviska, F., Drogui, P., Blais, J.-F., Mercier, G.: Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy 96, 318–326 (2009)

    Article  Google Scholar 

  33. Baláz, P., Achimovicová, M.: Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite. Int. J. Miner. Process 81, 44–50 (2006)

    Article  Google Scholar 

  34. Bai, M., Zheng, Y.-J., Liu, W.-Y., Zhang, C.-F.: Alkaline leaching and leaching kinetics of arsenic sulfide residue. J. Cent. South Univ. 39, 268–272 (2008). In Chinese

    Google Scholar 

  35. Smetanin, A.V., Pyshkin, A.S., Osipov, G.N., Sokhadze, L.A., Smirnov, M.K., Turygin, V.V., Zhukov, E.G., Potolokov, V.N., Tomilov, A.P., Fedorov, V.A.: Arsenic extraction from nonferrous metals industry waste. Inorg. Mater. 43, 1093–1102 (2007)

    Article  Google Scholar 

  36. Ministry of Environmental Protection of People’s Repubic of China: Solid waste—extraction procedure for leaching toxicity—horizontal vibration method, HJ 557–2010. China Environmental Science Press, Beijing (2010)

    Google Scholar 

  37. Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P.: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1, 57–61 (1999)

    Article  Google Scholar 

  38. Ministry of Environmental Protection of People’s Repubic of China: Identification standards for hazardous wastes—identification for extraction toxicity. China Environ. Sci. Press, Beijing (2007)

    Google Scholar 

  39. Jacobson, C.A.: Encyclopedia of chemical reactions. Reinhold Pub. Corp, California (1946)

    Google Scholar 

  40. Editorial boad of Encyclopedia of China: Encyclopedia of China, vol. 19. Encyclopedia of China Publishing House, Beijing (2009)

    Google Scholar 

  41. Ministry of Environmental Protection of People’s Repubic of China: Standard for pollution control on the security landfill site for hazardous waste, GB 18698–2001. China Environmental Science Press, Beijing (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-Tech Research and Development Programs of China (Grant No. 2007AA061300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Jing He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yao, Q., Shao, LM. et al. Recovery of Arsenic Trioxide from a Sludge-Like Waste by Alkaline Leaching and Acid Precipitation. Waste Biomass Valor 5, 255–263 (2014). https://doi.org/10.1007/s12649-013-9231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9231-1

Keywords

Navigation