Skip to main content
Log in

Evaluation of Fishmeal as Starting Material for Producing Biodegradable Protein-Based Thermoplastic Polymers

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Evaluate low value marine waste material from farmed Atlantic salmon (Salmo salar) as starting material for the production of low cost, biodegradable protein-based thermoplastic polymers.

Methods

Dynamic mechanical analysis, compression moulding, gel permeation chromatography, scanning electron microscopy and amino acid distribution analysis.

Results

Through a series of dynamic mechanical analysis studies it was shown that fishmeal can be plasticized with hydrophilic plasticizers to yield a material that can be successfully compression moulded into consolidated polymers at temperatures above the glass transition temperatures of the mixtures. Addition of SDS and urea further increased the processability of the fishmeal and homogenous polymers were produced. The mechanical properties of the polymers were poor and they were generally too brittle to allow extensive mechanical testing. Scanning electron microscopy revealed a sheet-like sub-structure within the polymer network which explained the poor mechanical properties. Gel permeation chromatography and amino acid distribution analysis of the fishmeal indicated that the proteins in the fishmeal are of low molecular weight with a high content of collagen. The fishmeal was also evaluated as part of polymeric blends with polyethylene, biodegradable polybutylene succinate and bovine bloodmeal.

Conclusion

It was possible to generate consolidated fish waste based polymeric materials. Fishmeal did not perform as well as bovine bloodmeal as a thermoplastic biopolymer mainly due to its low protein content and low molecular mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dale, B.E.: ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. J. Chem. Technol. Biotech. 78, 1093–1103 (2003)

    Article  Google Scholar 

  2. Verbeek, C.J.R., van den Berg, L.E.: Extrusion processing and properties of protein-based thermoplastics. Macromol. Mater. Eng. 295, 10–21 (2010)

    Article  Google Scholar 

  3. Hatti-Kaul, R., Tornvall, U., Gustafsson, L., Borjesson, P.: Industrial biotechnology for the production of bio-based chemicals a cradle-to-grave perspective. Trends Biotechnol. 25, 119–124 (2007)

    Article  Google Scholar 

  4. Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., Beppu, M.M.: Natural-based plasticizers and biopolymer films: a review. Eur. Polym. J. 47, 254–263 (2011)

    Article  Google Scholar 

  5. Kumar, R., Liu, D., Zhang, L.: Advances in proteinous biomaterials. J. Biobased Mater. Bio. 2, 1–24 (2008)

    Article  MATH  Google Scholar 

  6. Verbeek, C.J.R., Hicks, T., Langdon, A.: Biodegradation of bloodmeal-based thermoplastics in green-waste composting. J. Polym. Environ. 20, 53–62 (2012)

    Article  Google Scholar 

  7. Verbeek, C.J.R., Hicks, T., Langdon, A.: Degradation as a result of UV radiation of bloodmeal-based thermoplastics. Polym. Deg. Stab. 96, 515–522 (2011)

    Article  Google Scholar 

  8. Verbeek, C.J.R., van den Berg, L.E.: Mechanical properties and water absorption of thermoplastic bloodmeal. Macromol. Mater. Eng. 296, 524–534 (2011)

    Article  Google Scholar 

  9. Cuq, B., Gontard, N., Cuq, J.L., Guilbert, S.: Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agr. Food Chem. 45, 622–626 (1997)

    Article  Google Scholar 

  10. Tanaka, M., Iwata, K., Sanguandeekul, R., Handa, A., Ishizaki, S.: Influence of plasticizers on the properties of edible films prepared from fish water-soluble proteins. Fisheries Sci. 67, 346–351 (2001)

    Article  Google Scholar 

  11. Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., Tanaka, M.: Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloid. 20, 492–501 (2006)

    Article  Google Scholar 

  12. Carvalho, R.A., Sobral, P.J.A., Thomazine, M., Habitante, A., Gimenez, B., Gomez-Guillen, M.C., Montero, P.: Development of edible films based on differently processed Atlantic halibut (Hippoglossus hippoglossus) skin gelatin. Food Hydrocolloid. 22, 1117–1123 (2008)

    Article  Google Scholar 

  13. Bier, J.M., Verbeek, C.J.R., Lay, M.C.: Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA. J. Therm. Anal. Calorim. 1–13 (2012)

  14. Verbeek, C.J.R., van den Berg, L.E.: Development of proteinous bioplastics using bloodmeal. J. Polym. Environ. 19, 1–10 (2011)

    Article  Google Scholar 

  15. Boucher, S.E., Calsamiglia, S., Parsons, C.M., Stein, H.H., Stern, M.D., Erickson, P.S., Utterback, P.L., Schwab, C.G.: Intestinal digestibility of amino acids in rumen-undegraded protein estimated using a precision-fed cecectomized rooster bioassay: II. Distillers dried grains with solubles and fish meal. J. Dairy Sci. 92, 6056–6067 (2009)

    Article  Google Scholar 

  16. Ellinger, G.M., Boyne, E.B.: Amino acid composition of some fish products and casein. Brit. J. Nutr. 19, 587–592 (1965)

    Article  Google Scholar 

  17. Szpak, P.: Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011)

    Article  Google Scholar 

  18. Stryer, L.: Biochemistry. W. H. Freeman, New York (1988)

    Google Scholar 

  19. Ramachandran, G., Reddi, A.H. (eds.): Biochemistry of Collagen. Plenum Press, New York (1976)

    Google Scholar 

  20. Aksnes, A., Izquierdo, M.S., Robaina, L., Vergara, J.M., Montero, D.: Influence of fish meal quality and feed pellet on growth, feed efficiency and muscle composition in gilthead seabream (Sparus aurata). Aquaculture 153, 251–261 (1997)

    Article  Google Scholar 

  21. Friedman, M.: Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agr. Food Chem. 47, 1295–1319 (1999)

    Article  Google Scholar 

  22. Panich, N.M., Seliverstov, A.F., Ershov, B.G.: Photooxidative decomposition of sodium dodecyl sulfate in aqueous solutions. Russ. J. Appl. Chem. 81, 2104–2107 (2008)

    Article  Google Scholar 

  23. Cao, N., Yang, X.M., Fu, Y.H.: Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloid. 23, 729–735 (2009)

    Article  Google Scholar 

  24. Royall, P.G., Huang, C.Y., Tang, S.W.J., Duncan, J., Van-de-Velde, G., Brown, M.B.: The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int. J. Pharm. 301, 181–191 (2005)

    Article  Google Scholar 

  25. Karbowiak, T., Hervet, H., Leger, L., Champion, D., Debeaufort, F., Voilley, A.: Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application. Biomacromolecules 7, 2011–2019 (2006)

    Article  Google Scholar 

  26. Verbeek, C.J.R., Koppel, N.J.: Moisture sorption and plasticization of bloodmeal-based thermoplastics. J. Mater. Sci. 47, 1187–1195 (2012)

    Article  Google Scholar 

  27. Kiseleva, T.I., Shandryuk, G.A., Khasbiullin, R.R., Shcherbina, A.A., Chalykh, A.E., Feldstein, M.M.: Phase state of polyelectrolyte complexes based on blends of acrylic copolymers. J. Appl. Polym. Sci. 122, 2926–2943 (2011)

    Article  Google Scholar 

  28. Park, H.M., Misra, M., Drzal, L.T., Mohanty, A.K.: “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5, 2281–2288 (2004)

    Article  Google Scholar 

  29. Quero, E., Muller, A.J., Signori, F., Coltelli, M.B., Bronco, S.: Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol. Chem. Phys. 213, 36–48 (2012)

    Article  Google Scholar 

  30. UusiPenttila, M.S., Richards, R.J., Torgerson, B.K., Berglund, K.A.: Spectroscopically determined dielectric constants for various esters. Ind. Eng. Chem. Res. 36, 510–512 (1997)

    Article  Google Scholar 

  31. Fujimaki, T.: Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym. Deg. Stab. 59, 209–214 (1998)

    Article  Google Scholar 

  32. Tserki, V., Matzinos, P., Zafeiropoulos, N.E., Panayiotou, C.: Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J. Appl. Polym. Sci. 100, 4703–4710 (2006)

    Article  Google Scholar 

  33. Wollerdorfer, M., Bader, H.: Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8, 105–112 (1998)

    Article  Google Scholar 

  34. Migneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C.: Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37, 790–802 (2004)

    Google Scholar 

  35. Park, S.K., Bae, D.H., Rhee, K.C.: Soy protein biopolymers cross-linked with glutaraldehyde. J. Am. Oil Chem. Soc. 77, 879–883 (2000)

    Article  Google Scholar 

  36. Orliac, O., Rouilly, A., Silvestre, F., Rigal, L.: Effects of additives on the mechanical properties, hydrophobicity and water uptake of thermo-moulded films produced from sunflower protein isolate. Polymer 43, 5417–5425 (2002)

    Article  Google Scholar 

  37. Pereda, M., Aranguren, M.I., Marcovich, N.E.: Effect of crosslinking on the properties of sodium caseinate films. J. Appl. Polym. Sci. 116, 18–26 (2010)

    Article  Google Scholar 

  38. Huanglee, L.L.H., Cheung, D.T., Nimni, M.E.: Biochemical-changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived cross-links. J. Biomed. Mater. Res. 24, 1185–1201 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from MABIT (UB0047) and J.S is for grateful for this generous support. Jim Bier and Dr. Mark Lay are acknowledged for excellent technical assistance. Dr. Sarah Boucher is further acknowledged for supplying complementary data for Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Svenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svenson, J., Walallavita, A.S. & Verbeek, C.J.R. Evaluation of Fishmeal as Starting Material for Producing Biodegradable Protein-Based Thermoplastic Polymers. Waste Biomass Valor 4, 147–159 (2013). https://doi.org/10.1007/s12649-012-9186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9186-7

Keywords

Navigation