Skip to main content

Advertisement

Log in

Evaluation of Maturity and Stability Parameters of Composts Prepared from Organic Wastes and Their Response to Wheat

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate changes in physical, chemical and biological parameters to assess the maturity and stability of composts prepared from mixture of different organic wastes over a time period of 150 days. Six different composts were prepared using a mixture of different organic wastes with or without enrichment of rock phosphate (RP), microorganism inoculation (MO) and agro-industrial wastes (sewage sludge, pressmud, poultry waste). All the composts attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Compost maturity should be assessed by measuring two or more compost parameters, and that parameters of compost maturity need to satisfy the following threshold values: organic matter loss >42 %, C:N ratio <15, water soluble organic C (Cw):organic N (Norg) ratio <0.55, humic acid:fulvic acid ratio >1.9, humification index >30 %, cation exchange capacity:total organic carbon ratio >1.7 and germination index >70 %. Ambient temperature, decrease in bacterial and fungal counts along with increase in actinomycetes count and stable at the end of composting could also be used as stability parameters. Composts enriched with RP, MO and agro-industrial wastes matured earlier compared to un-enriched composts. Application of agro-industrial waste composts significantly increased wheat yield compared with addition of their raw materials. Agro-industrial waste composts applied with recommended dose of NK fertilizers produced wheat yield comparable to that obtained with recommended dose of NPK fertilizers, indicating a net saving of 100 % P fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allen, O.N.: Experiments in Soil Biology, 3rd edn. Burgers Publishing Co, Minneapolis (1957)

    Google Scholar 

  2. Bajpai, R.K., Upadhyay, K., Joshi, B.S.: Productivity and economics of rice-wheat cropping system under integrated nutrient supply systems. Indian J. Agron. 47, 20–25 (2002)

    Google Scholar 

  3. Benito, M., Masaguer, A., Moliner, A., Arrigo, N., Palma, R.M.: Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol. Fertil. Soils 37, 184–189 (2003)

    Google Scholar 

  4. Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria of compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453 (2009)

    Article  Google Scholar 

  5. Bernal, M.P., Paredes, C., Sanchew-Monedero, M.A., Cegarra, J.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63, 91–99 (1998)

    Article  Google Scholar 

  6. Bhattacharyya, P.: Prospect of organic nutrient resources utilization in India. Indian J. Fert. 3, 93–107 (2007)

    Google Scholar 

  7. Bremner, J.M., Mulvaney, C.S.: Total N. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis, Part II, pp. 371–378. American Society of Agronomy, Madison (1982)

    Google Scholar 

  8. Brinton, W.F.: Compost Quality Standards and Guidelines, pp. 32–35. Woods End Research Laboratory, USA (2000)

    Google Scholar 

  9. Chang, J.I., Chen, Y.J.: Effects of bulking agents on food waste composting. Bioresour. Technol. 101, 5917–5924 (2010)

    Article  Google Scholar 

  10. Chefetz, B., Hatcher, P.G., Hadar, Y., Chen, Y.: Chemical and biological characterization of organic matter during composting of municipal solid wastes. J. Environ. Qual. 25, 776–785 (1996)

    Article  Google Scholar 

  11. Raj, D., Antil, R.S.: Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 102, 2868–2873 (2011)

    Article  Google Scholar 

  12. Golueke, C.G.: Principles of biological resources recovery. BioCycle 22, 36–40 (1981)

    Google Scholar 

  13. He, X.T., Logan, T.J., Traine, S.J.: Physical and chemical characteristics of selected U.S. municipal solid waste composts. J. Environ. Qual. 24, 543–552 (1995)

    Article  Google Scholar 

  14. Hoekstra, N.J., Bosker, T., Lantinga, E.A.: Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L). Agric. Ecosyst. Environ. 93, 189–196 (2002)

    Article  Google Scholar 

  15. Hoitink, H.A.J.: Trends in treatment and utilization of solid wastes through composting in the United States. In: Warman, P.R., Taylor, B.R. (eds.) Proceedings International Composting Symposium, vol. 1, pp. 1–13. CBA Press Inc., Nova Scotia (2000)

    Google Scholar 

  16. Hue, N.V., Liu, J.: Predicting compost stability. Compost Sci. Util. 3, 8–15 (1995)

    Google Scholar 

  17. Iannotti, D.A., Grebus, M.E., Toth, B.L., Madden, L.V., Hoitink, H.A.J.: Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J. Environ. Qual. 23, 1177–1183 (1994)

    Article  Google Scholar 

  18. Ibrahim, M., Hassan, A., Iqbal, M., Valeem, E.E.: Response of wheat growth and yield of various levels of compost and organic manure. Pak. J. Bot. 40, 2135–2141 (2008)

    Google Scholar 

  19. Iglesias-Jimenez, E., Perez-Garcia, V.: Determination of maturity indices for city refuse composts. Agr. Ecosyst. Environ. 38, 331–343 (1992)

    Article  Google Scholar 

  20. John, M.K.: Colorimetric determination of phosphorus in soil and plant material with ascorbic acid. Soil Sci. 109, 214–220 (1970)

    Article  Google Scholar 

  21. Kirchmann, H., Widen, P.: Separately collected organic household wastes. Swedish J. Agric. Res. 24, 3–12 (1994)

    Google Scholar 

  22. Kitts, D.D., Wu, C.H., Stich, H.F., Powrite, W.D.: Effect of glucose-lysine Maillard reaction products on bacterial and mammalian cell mutagenesis. J. Agric. Food Chem. 41, 2253–2258 (1993)

    Google Scholar 

  23. Ko, H.J., Kim, K.Y., Kim, H.T., Kim, C.N., Umeda, M.: Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage. 28, 813–820 (2008)

    Article  Google Scholar 

  24. Lax, A., Roig, A., Costa, F.: A method for determining the cation exchange capacity of organic materials. Pl. Soil 94, 349–355 (1986)

    Article  Google Scholar 

  25. Martin, J.P.: Use of acid base Bengal and streptomycin in the plate method of estimating soil fungi. Soil Sci. 69, 215–233 (1950)

    Article  Google Scholar 

  26. Morel, J.L., Colin, F., Germon, J.C., Godin, P., Juste, C.: Methods for the evaluation of the maturity of municipal refuse compost. In: Gasser, J.K.R. (ed.) Composting of Agricultural and Other Wastes, pp. 56–72. Elsevier Applied science Publications, Barking, Essex (1985)

    Google Scholar 

  27. Muneshwar, S., Singh, V.P., Reddy, K.S., Singh, M.: Effect of integrated use of fertilizer nitrogen and farmyard manure or green manure on transformation of N, K and S and productivity of rice-wheat cropping system on a Vertisol. J. Indian Soc. Soil Sci. 49, 430–435 (2001)

    Google Scholar 

  28. Nelson, D.W., Sommers, L.E.: Total carbon, organic carbon and organic matter. In: Page, A.L. (ed.) Methods of Soil Analysis, Part II, pp. 539–579. American Society of Agronomy, Madison (1982)

    Google Scholar 

  29. Nevens, F., Reheul, D.: The application of vegetable, fruit and garden waste compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use. Eur. J. Agron. 19, 189–203 (2003)

    Article  Google Scholar 

  30. Ranalli, G., Botturea, G., Taddei, P., Garavni, M., Marchetti, R., Sorlini, G.: Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. J. Environ. Sci. Health 36, 415–436 (2001)

    Article  Google Scholar 

  31. Roig, A., Lax, A., Gegarra, J., Costa, T., Harnandez, M.T.: Cation exchange capacity as a parameter for measuring the humification degree of manures. Soil Sci. 146, 311–316 (1988)

    Article  Google Scholar 

  32. Satisha, G.C., Devaranjan, L.: Effect of amendments on windrow composting of sugar industry pressmud. Waste Manage. 27, 1083–1091 (2007)

    Article  Google Scholar 

  33. Schlichting, E., Blume, H.P.: BodenKundlxhes Praktikum, pp. 136–138. Paul Parey, Hamburg, Berlin (1966)

    Google Scholar 

  34. Sellami, F., Hachicha, S., Chtourou, M., Medhioub, K., Ammar, E.: Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour. Technol. 99, 6900–6907 (2008)

    Article  Google Scholar 

  35. Singh, C.P., Ruhal, D.S., Singh, M.: Solubilization of low grade rock phosphate by composting with a farm waste, pearl millet boobla. Agric. Wastes 8, 17–25 (1983)

    Article  Google Scholar 

  36. Tang, J.C., Maie, N., Tada, Y., Katayama, A.: Characteristics of the maturing process of cattle manure compost. Process Biochem. 41, 380–389 (2006)

    Article  Google Scholar 

  37. Tiquia, S.M., Tam, N.F.Y., Hodgkiss, I.J.: Effect of composting on phyto-toxicity of spent pig manure saw dust litter. Environ. Pollut. 93, 249–256 (1996)

    Article  Google Scholar 

  38. Tiquia, S.M., Tam, N.F.Y., Hodgkiss, I.J.: Effect of turning frequency on composting of spent pig-manure sawdust litter. Bioresour. Technol. 62, 37–42 (1997)

    Article  Google Scholar 

  39. Veeken, A., Nierop, K., deWilde, V., Hamelers, B., deWilde, V.: Characterization of NaOH extracted humic acid during composting of a biowaste. Bioresour. Technol. 72, 33–41 (2009)

    Article  Google Scholar 

  40. Walkley, A.J., Black, C.A.: Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37, 29–38 (1934)

    Article  Google Scholar 

  41. Wedzicha, B.L., Kaputo, M.Y.: Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphit ion. Food Chem. 43, 359–367 (1992)

    Article  Google Scholar 

  42. Wu, L., Ma, L.Q., Martinez, G.A.: Comparison of methods for evaluating stability and maturity of biosolid composts. J. Environ. Qual. 29, 424–429 (2000)

    Article  Google Scholar 

  43. Zucconi, F., de Bertoldi, M.: Compost specification for the production and characterization of compost from municipal solid waste. In: de Bertoldi, M., et al. (eds.) Compost: Production, Quality and Use, pp. 30–50. Elsevier, Barking (1987)

    Google Scholar 

  44. Zucconi, F., Mona, C.A., Forte, M., de Bertoldi, M.: Phytotoxins during the stabilization of organic matter. In: Gasser, J.K.R. (ed.) Composting of Agricultural and Other Wastes, pp. 73–85. Elsevier Applied Science Publishers, Barking (1985)

    Google Scholar 

  45. Zucconi, F., Pera, A., Forte, M., de Bertoldi, M.: Evaluating toxicity of immature compost. Biocycle 22, 54–57 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Antil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antil, R.S., Raj, D., Narwal, R.P. et al. Evaluation of Maturity and Stability Parameters of Composts Prepared from Organic Wastes and Their Response to Wheat. Waste Biomass Valor 4, 95–104 (2013). https://doi.org/10.1007/s12649-012-9141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9141-7

Keywords

Navigation