Skip to main content

Advertisement

Log in

An Economic Analysis of Three Operational Co-digestion Biogas Plants in Germany

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As for other renewable energies in Germany, biogas production has rapidly expanded in recent years, such that the current installed capacity in this country accounts for around half of the European total. Against this background, and recognising the actual research need in the profitability analysis of along the whole supply chains for biogas, this paper carries out an economic analysis of three operational German co-digestion biogas plants, which employ biowaste, sewage sludge and energy crops for electricity production as well as for injection of biomethane into the natural gas grid. The profitability of the considered plants is assessed using the static Profit Comparison and the dynamic Net Present Value methods. From the analysis of each of the plants based on several technical and economic assumptions, the production costs for electricity and biomethane have been derived. Investment-related costs and substrate prices represent the most important financial variables of the considered plants. The electricity production from energy crops appears to be the most lucrative option, with a dynamic pay-back period of 6.7 years. Hence, subsidies and incentive schemes for biogas play a key role for the plants using energy crops as well as for plants using biowaste and sewage sludge. Furthermore, process failures under mesophilic conditions are here briefly described and could affect the biogas yield and thus have an influence on the profitability of the plants. The obtained results represent the foundation for a forthcoming comprehensive energy system analysis of the integration of biogas into the German energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. These values refer to the lower calorific value for the gas and a CO2-removal through a pressurized wet scrubbing process from the company Malmberg.

References

  1. Thrän, D., Scholwin F., Witt J., Hennig, C., Rensberg, N., Schwenker, A., Scheftelowitz, M., Krautz, A., Schaudbach, K., Kutne, T,. Hilse A., Vetter, A., Graf, T., Reinhold, G.: Monitoring zur Wirkung des Erneuerbaren-Energien-Gesetz (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse, 48 Leipzig (2010)

  2. Müller-Langer, F.: Presentation: Biomethane as Transportation Fuel; IBC, Leipzig (2010)

  3. Renewable Energies-Act (Eneuerbare-Energien-Gestetz), Arbeitsausgabe der Clearingstelle EEG (2010)

  4. Systèmes solaires: le journal des énergies renouvelables N° 200 – 2010 Biogas barometer-EUROBSERV‘ER, p. 109 (2010)

  5. Butler, A., Hobbs, P., Winter, M.: Expanding biogas on UK dairy farms: a question of scale: Centre for Rural Policy Research, University of Exeter, University of Exeter North Wyke Research, 85th Annual Conference of the Agricultural Economics Society Warwick University (2011)

  6. Raven, R.P.J.M., Gregersen, K.H.: Biogas plants in Denmark: successes and setbacks. Department of Technology, Eindhoven University of Technology, Eindhoven (2004)

    Google Scholar 

  7. Lantza, M., Svenssonn, M., Börjesson, M.: The prospects for an expansion of biogas systems in Sweden—incentives, barriers and potentials, Environmental and Energy Systems Studies, Department of Technology and Society, Lund University (2006)

  8. Linné, M., Önsson, O., Rietz, J.: Literature study—gathering and analyse of the potential production of renewable methane (biogas and SNG) in Sweden, report, Biomil Ltd. and the Swedish Gas Centre, Malmö (in Swedish) (2006)

  9. Nordberg, A., Lindberg, A., Gruvberger, C., Lilja, T., Edström, M.: Biogas potential and future biogas plants in Sweden). Report no 17 (Recycle and Waste). Swedish Institute of Agricultural Engineering in co-operation with VBB Viak, a SWECO company (in Swedish with English summary) (1998)

  10. Lehtomäki, A.: Presentation: “Biogas in Finland-Situation report” IEA Bioenergy Task 37 Energy from Biogas and Landfill Gas, 13–15 April 2011, Istanbul (Turkey)

  11. Herr, M., Köntges, A., Lermen, A., Rostek, S.: Biogaspartner—a joint initiative. Biogas grid injection in Germany and Europe-market, technology and players. German Energy Agency (Dena), Berlin (2010)

    Google Scholar 

  12. Artl, A.: PhD. Dissertation: Systemanalytischer Vergleich zur Herstellen von Ersatzbrennstoffen aus biogenen Bioabfällen am Beispiel von kommunalem Klärschlamm, Bioabfall und Grünabfall, 98, Universitätsverlag Karlsruhe (2003)

  13. FNR: Studie Einspeisung von Biogas in das Erdgasnetz, Fachagentur Nachwachsende Rohstoffe e.V., vol 2. Leipzig (2006)

  14. Urban, W. Lohmann, H., Girod, K.: Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007–2008, BMBF Verbundprojekt „Biogaseinspeisung“, Oberhausen, 74, 79, 87, 95, 98 (2009)

  15. Koch, M.: PhD. Dissertation: „Ökologische und ökonomische Bewertung von Co-Vergärungsanlagen und deren Standortwahl“,vol 46, pp 128–129 Universitätsverlag Karlsruhe (2009)

  16. FNR: Biogasmessprogramm II, 61 Biogasanlagen in Vergleich, Fachagentur Nachwachsende Rohstoffe e.V (2009)

  17. Strahl, J.: Presentation: Economic aspects of biogas production and utilisation. AHK, France (2010)

    Google Scholar 

  18. Kelm, T., Drück, H., Langniß, O.: Evaluierung von Einzelmaßnahmen zur Nutzung erneuerbare Energie (Marktanreizprogramm). Research project financed by the Federal Ministry for the Environment Nature Conservation and Nuclear Safety. ZSW, Stuttgart (2008)

    Google Scholar 

  19. König, A.: PhD. Dissertation: „Ganzheitliche Analyse und Bewertung konkurrierender energetischer Nutzungspfade für Biomasse im Energiesystem Deutschland bis zum Jahre 2030“, ISSN 0938-128 (2009)

  20. Moser, A., Fiddecke, S.: Hessen Energie: „Wirtschaftlichkeitskalkulationen für Biogasanlagen nach dem EEG 2009“, Hessen Energie. HERO, LLH (2009)

    Google Scholar 

  21. Schinnerl, D., Bleyl-Androschin J.W., Eder, M.: Presentation: „Wirtschaftlichkeit von Biomethan Nutzungspfaden“, Graz (2010)

  22. Götze, U.: Investment appraisal, methods and models. Springer, Berlin (2008)

  23. BDEW: BDEW, Bundesverband der Energie—und Wasserwirtschaft e.V.: Wasserfakten 2010 (2010)

  24. GasNZV: Verordnung über den Zugang zu Gasversorgungsnetzen (Gasnetzzugangsverordnung—GasNZV), Ausfertigungsdatum 03 Sep 2010 (2010)

  25. ia GmbH: Presentation: Umbaumaßnahmen, Optimierung, Energieffizienz durch Erweiterung der Hydrolysestufe. Bioabfallvergärungsanlage Kirchstochach, Kirchstochach (2009)

  26. Schievano A., D’Imporzano, G., Adani, F.: Substituting energy crops with organic wastes and agro-industrial residues for biogas production. Dipartimento di Produzione Vegetale, Universita degli Studi di Milano (2009)

  27. Petrik, G., Eberl, C., Eber, B.: Kläranlage Wasserfeld-Einbau und betrieb Einbau und Betrieb einer Versuchsanlage zur Schlammdesintegration. http://www.wasserfeld.it (2004)

  28. Wei, Y.W., Fan Y-B., Wang, M-J.: A cost analysis of sewage sludge composting for small and mid-scale municipal wastewater treatment plants. Department of Water Pollution Control Technology, research Center for Eco-Environmental Sciences, Chinese Academy of Science (2001)

  29. ADEME/Direction des Déchets et des Sol Etude des coûts de collecte et de compostage de biodéchets de quatre sites Qualorg: synthèse, p 16 (2002)

  30. Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH: Optmierung für einen nachhaltigen Ausbau der Biogaserzeugung und –nutzung in Deutschland (FKZ 0327544)-Teilbericht: wirtschaftliche Bewertung von Kompostierungsanlagen hinsichtlich der Integration einer Anaerob-Stufe als Vorschaltanlage, Bundesministerium für Umwelt, Naturschutz, (2007)

  31. Schüsseler, P.: „Zielsetzung des Fachgesprächs“, Gülzower Fachgespräche, Fachagentur für Nachwachsende Rohstoffe e. V. (2008)

  32. Weiland, P.: „Wichtige Messdaten für den Prozessablauf und Stand der Technik in der Praxis“, Gülzower Fachgespräche, Fachagentur für Nachwachsende Rohstoffe eV. Gülzow 27, 17–31 (2008)

    Google Scholar 

  33. Mudrack, K., Kunst, S.: Biologie der Abwasserreinigung. Spektrum Akademischer Verlag, Heidelberg (2003)

  34. Kleyböcker, A., Liebrich, M., Kraume, M., Wittmaier, M., Würdemann, H.: Comparison of different procedures to stabilize biogas formation after over-acidification in a thermophilic waste digestion system: influence of aggregate formation on process stability. Waste Manag. (2011, submitted)

  35. Kleyböcker, A., Seyfarth, D., Liebrich, M., Vieth, A., Kraume, M., Würdemann, H.: Early warning indicator in terms of an over-acidification due to organic overloads at waste treatment anaerobic co-digesters (2011, in preparation)

  36. Schattauer, A., Weiland, P.: Beschreibung ausgewählter Substrate Handreichung Biogasgewinnung und -nutzung. Fachagentur Nachwachsende Rohstoffe e.V., Gülzow (2006)

    Google Scholar 

  37. Bischofsberger, W., Dichtl, N., Rosenwinkel, K., Seyfried, C., Böhnke, B.: Anaerobtechnik, p. 718. Springer, Berlin (2005)

    Book  Google Scholar 

  38. Angelidaki, I., Ahring, B.: Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. (1992)

  39. Luostarinen, S., Luste, S., Sillanpää, M.: Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from meat processing plant. Bioresour. Technol (2009)

  40. Kleyböcker, A., Teitz, S., Würdemann, H., Kraume, M.: Characterization of mixing conditions at large scale digesters: applying uranine as a tracer (2011, in preparation)

Download references

Acknowledgments

The present work has been carried out in the context of the research project “Optgas: comparative investigations in large biogas reactors—microbiological, process-related, ecological and economical assessment and optimisation”, financed by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety in cooperation with the German Centre for Geosciences in Potsdam, with the funding code 03KB018F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Balussou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balussou, D., Kleyböcker, A., McKenna, R. et al. An Economic Analysis of Three Operational Co-digestion Biogas Plants in Germany. Waste Biomass Valor 3, 23–41 (2012). https://doi.org/10.1007/s12649-011-9094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9094-2

Keywords

Navigation