Skip to main content

Advertisement

Log in

Green Electricity from Biomass, Part II: Environmental Impacts Considering Avoided Burdens from Replacing the Conventional Provision of Additional Functions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Environmental impacts of the introduction of electricity generation from biomass are investigated on the basis of data from plants operated in Austria. Different conversion technologies (anaerobic digestion, combustion, gasification) are considered and environmental impacts are analyzed according to ISO 14040 for Life Cycle Assessment. For the impact assessment the CML 2001 base line approach covering 11 impact categories is used. The paper presents the calculation of the avoided environmental burdens from replacing the conventional provision of functions by the additional functions of the biomass system. These additional functions are the provision of heat, nutrients and waste disposal. The conventional provision of heat and the disposal of manure and organic residues show the highest influence on total results. After the consideration of avoided burdens emission-savings are calculated in the impact categories GWP, ADP, ODP, AP and EP, while emissions remain in the impact categories POCP, LUC, HTP, TAETP, FAETP and MAETP for most of the plant types. In comparison with the UCTE-electricity-production-mix total emissions are lower for almost all plant types and impact categories. A ranking of the total results based on the unweighed aggregation of all impact category results is lead by anaerobic digestion of mainly organic residues followed by gasification of wood chips, the anaerobic digestion in small plants and combustion of wood chips. These results show that it is essential to consider both direct and indirect environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The term “residues” is defined in this paper as organic wastes produced during the production process of other products which are not part of the system under investigation. As given in [7] the organic residues used are draff, glycerine from RME production, kitchen leftovers, lawn cutting, oil seed residues, potato residues, sugar beet cuttings, vegetable residues or wheat mill residues. In practice they have no economic value or producers even have to pay to be allowed to dispose them.

  2. The term “co-products” refers in this paper to products which are produced by the biomass-system in addition to the main product electricity and which substitute conventional products with the same function (heat and nutrients).

  3. UCTE … Union for the Co-ordination of Transmission of Electricity in Europe (approximately 15.5% hydro power, 36.9% nuclear energy and 47.6% from fossil thermal power plants) [27].

Abbreviations

ADP:

Abiotic depletion potential (kg Sb.-eq.)

AP:

Acidification potential (kg SO2-eq.)

CFC:

Chlorofluorocarbon

CHP:

Combined heat and power

COD:

Chemical oxygen demand

DCB:

Dichlorobenzene

EP:

Eutrophication potential (kg PO4-eq.)

FAETP:

Freshwater aquatic ecotoxicity potential (kg 1,4-DCB-eq.)

GWP:

Global warming potential (kg CO2-eq.)

HTP:

Human toxicity potential (kg 1,4-DCB-eq.)

LCA:

Life cycle assessment

LUC:

Land use, competition, (m2 · a−1)

MAETP:

Marine aquatic ecotoxicity potential (kg 1,4-DCB-eq.)

NMVOC:

Non-methane volatile organic compounds

ODM:

Organic dry matter

ODP:

Ozone depletion potential (kg CFC-11-eq.)

POCP:

Photochemical ozone creation potential (kg C2H4-eq.)

RME:

Rapeseed methyl ester, a form of biodiesel

TAETP:

Terrestrial ecotoxicity potential (kg 1,4-DCB-eq.)

TAN:

Total ammoniacal nitrogen

TKN:

Total Kjeldahl nitrogen, sum of organic nitrogen, ammonia (NH3) and ammonium (NH4 +)

TS:

Total solids

UCTE:

Union for the co-ordination of transmission of electricity in Europe

VSS:

Volatile suspended solids

References

  1. Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Recycl. 53, 434–447 (2009)

    Article  Google Scholar 

  2. Börjesson, P., Berglund, M.: Environmental systems analysis of biogas systems—part I: fuel-cycle emissions. Biomass Bioenergy 30, 469–485 (2006)

    Article  Google Scholar 

  3. Spielmann, M., Dinkel, F., Schleiss, K.: Biogas. In: Jungbluth, N., Chudacoff, M., Daunat, A., Dinkel, F., Doka, G., Faist Emmenegger, M., Gnansounou, E., Kljun, N., Schleiss, K., Spielmann, M., Stettler, C., Sutter, J. (eds.) Life Cycle Inventories of Bioenergy. Ecoinvent Report No. 17. Swiss Centre for Life Cycle Inventories, Dübendorf, CH (2007)

  4. Jungmeier, G., Resch, G., Spitzer, J.: Environmental burdens over the entire life cycle of a biomass CHP plant. Biomass Bioenergy 15, 311–323 (1998)

    Article  Google Scholar 

  5. Bauer, C.: Holzenergie. In: Dones, R. et al. (eds.) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Final report ecoinvent No. 6-IX, Paul Scherrer Institut Villingen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH (2007)

  6. Pucker, J., Zwart, R., Jungmeier, G.: Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat. Biomass Bioenergy. doi:10.1016/j.biombioe.2011.02.040 (2011)

  7. Siegl, S., Laaber, M., Holubar, P.: Green electricity from biomass, part I: environmental impacts of direct life cycle emissions. Waste Biomass Valor 2, 267–284 (2011)

    Article  Google Scholar 

  8. Azapagic, A., Clift, R.: Allocation of environmental burdens in co-product systems: product related burdens (Part I). Int. J. LCA 4(6), 357–369 (1999)

    Article  Google Scholar 

  9. Azapagic, A., Clift, R.: Allocation of environmental burdens in multiple-function systems. J. Clean. Prod. 7, 101–119 (1999)

    Article  Google Scholar 

  10. ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardisation (ISO), Geneve (2006)

  11. Ekvall, T., Finnveden, G.: Allocation in ISO 14041—a critical review. J. Clean. Prod. 9, 197–208 (2001)

    Article  Google Scholar 

  12. Kim, S., Dale, B.: Allocation procedure in ethanol production system from corn grain. Int J LCA 7(4), 237–243 (2002)

    Article  Google Scholar 

  13. Börjesson, P.: Good or bad bioethanol from a greenhouse gas perspective—what determines this? Appl. Energy 86, 589–594 (2009)

    Article  Google Scholar 

  14. Gnansounou, E., Dauriat, A., Villegas, J., Panichelli, L.: Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour. Technol. 100, 4919–4930 (2009)

    Article  Google Scholar 

  15. Singh, A., Pant, D., Korres, N.E., Nizami, A.-S., Prasad, S., Murphy, J.D.: Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour. Technol. 101, 5003–5012 (2010)

    Article  Google Scholar 

  16. Bergsma, G., Vroonhof, J., Dornburg, V.: A Greenhouse Gas Calculation Methodology for Biomass-Based Electricity, Heat and Fuels—The View of the Cramer Commission. CE Delft (2006)

  17. Edwards, R., Larivé, J., Mahieu, V., Rouveirolles, P.: Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. Brussels : Concawe, Eucar, European Commission. http://ies.jrc.ec.europa.eu/WTW (2006)

  18. Börjesson, P., Berglund, M.: Environmental systems analysis of biogas systems—part II: the environmental impact of replacing various reference systems. Biomass Bioenergy 31, 326–344 (2007)

    Article  Google Scholar 

  19. Cherubini, F., Strømman, A.: Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102, 437–451 (2011)

    Article  Google Scholar 

  20. Hamelinck, C., Koop, K., Croezen, H., Koper, M., Kampman, B., Bergsma, G.: Technical Specification: Greenhouse Gas Calculator for Biofuels. Senter Novem, Ecofys (2008)

  21. Börjesson, P., Tufvesson, L.: Agricultural crop-based biofuels—resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 19, 108–120 (2011)

    Article  Google Scholar 

  22. Cherubini, F.: GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew. Energy 35, 1565–1573 (2010)

    Article  Google Scholar 

  23. Lindeijer, E., Huppes, G.: Partitioning economic inputs and outputs to product systems. In: Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, R., van Duin, R., Huijbregts, M.A.J. (eds.) Life Cycle Assessment; An Operational Guide to the ISO Standards, Final report, Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Leiden University (2001)

  24. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Germany (BMU): renewable energy sources in figures—national and international development (2004)

  25. Laaber, M., Madlener, R., Brachtl, E., Kirchmayr, R.: Aufbau eines Bewertungssystems für Biogasanlagen—„Gütesiegel Biogas“. Final Report of the programme „Energiesysteme der Zunkunft“ funded by the Federal Ministry for Transport, Innovation and Technology, Austria (2007)

  26. Siegl, S.: Öko-Strom aus Biomasse. Vergleich der Umweltwirkungen verschiedener Biomasse-Technologien zur Stromerzeugung mittels Lebenszyklusanalysen. Doctoral thesis, University of Natural Resources and Life Sciences, Vienna (2010)

  27. Ecoinvent Centre: Ecoinvent data v1.3. Final reports ecoinvent 2000 No. 1–15. Swiss Centre for Life Cycle Inventories, Dübendorf (2006) www.ecoinvent.org

  28. Woess-Gallasch, S., Bird, N., Enzinger, P., Jungmeier, G., Padinger, R., Pena, N., Zanchi, G.: Greenhouse Gas Benefits of a Biogas Plant in Austria. IEA Bioenergy Task 38 Case Study Report. http://www.ieabioenergy-task38.org/projects/task38casestudies/T38_Paldau_Case_Study_Final_2011.pdf (2011)

  29. Riezinger, A.: Die Ermittlung der ökologischen Effizienz der Bereitstellungskette von Waldhackgut anhand ausgewählter Fallstudien. Diploma thesis, University of Natural Resources and Life Sciences, Vienna (2008)

  30. Amon, B., Kryvoruchko, V., Amon, T., Zechmeister-Boltenstern, S.: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 112, 153–162 (2006)

    Article  Google Scholar 

  31. Sommer, S.G., Hutchings, N.J.: Ammonia emission from field applied manure and its reduction—invited paper. Eur. J. Agron. 15, 1–15 (2001)

    Article  Google Scholar 

  32. Sommer, S.G.: Ammonia volatilization from farm tanks containing anaerobically digested animal slurry. Atmos. Environ. 31, 863–868 (1997)

    Article  Google Scholar 

  33. Edelmann, W., Schleiss, K., Engeli, H., Baier, U.: Ökobilanz der Stromgewinnung aus landwirtschaftlichem Biogas. Baar, Arbeitsgemeinschaft Bioenergie (arbi) (2001)

  34. Clemens, J., Trimborn, M., Weiland, P., Amon, B.: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 112, 171–177 (2006)

    Article  Google Scholar 

  35. Kryvoruchko, V.: Methanbildungspotential von Wirtschaftsdüngern aus der Rinderhaltung und der Wirkung der Abdeckung und anaeroben Behandlung auf klimarelevante Emissionen bei der Lagerung von Milchviehflüssigmist. Doctoral thesis, University of Natural Resources and Life Sciences, Vienna (2004)

  36. Wulf, S., Jager, P., Döhler, H.: Balancing of greenhouse gas emissions and economic efficiency for biogas-production through anaerobic co-fermentation of slurry with organic waste. Agric. Ecosyst. Environ. 112, 178–185 (2006)

    Article  Google Scholar 

  37. Hersener, J.L., Meier, U., Dinkel, F.: Ammoniakemissionen aus Gülle und deren Minderungsmaßnahmen unter besonderer Berücksichtigung der Vergärung, Swiss Federal Office of Energy (SFOE) (2002)

  38. Pötsch, E.M.: Nährstoffgehalt von Gärrückständen aus landwirtschaftlichen Biogasanlagen und deren Einsatz im Dauergrünland, Final Report (2004)

  39. Schulz, H., Eder, B.: Biogas Praxis, Grundlagen—Planung—Anlagenbau—Beispiele; Ökobuch Verlag, Staufen bei Freiburg; Germany; ISBN 3-922964-59-1 (2001)

  40. Amon, B., Moitzi, C., Wagner-Alt, C., Kryvoruchko, V., Amon, T., Boxberger, J.: Methane, Nitrous Oxide and Ammonia Emissions from Management of Liquid Manures. Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW), Austria (2002)

    Google Scholar 

  41. De Bode, M., Nielson, V., Voorburg, J., L’Hermite, P.: Odour and Ammonia Emissions from Livestock Farming, pp. 59–66. London (1991)

  42. Hüther, L., Schuchardt, F.: Einflussfaktoren auf die Schadgasfreisetzung bei der Lagerung/Kompostierung tierischer Exkremente. Braunschweig, Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL) (1998)

  43. Sommer, S.G.: Ammonia volatilization from farm tanks containing anaerobically digested animal slurry. Atmos. Environ. 31, 863–868 (1997)

    Article  Google Scholar 

  44. Wagner-Alt, C.: CH4-, NH3- und N2O-Emissionen aus der Lagerung von Milchviehflüssigmist und Reduziermöglichkeiten. University of Natural Resources and Life Sciences, Vienna (2002)

    Google Scholar 

  45. Amon, B.: NH3-, N2O- und CH4-Emissionen aus der Festmistverfahrenskette Milchviehanbindehaltung Stall-Lagerung-Ausbringung. Doctoral thesis, University of Natural Resources and Life Sciences, Vienna (1998)

  46. Külling, D., Menzi, H., Neftel, K., Sutter, P., Lischer, P., Kreuzer, M.: Emission of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. J. Agric. Sci. 137, 235–250 (2001)

    Article  Google Scholar 

  47. Olesen, J.E., Weiske, A., Asman, W. A., Weisbjerg, M.R., Djurhuus, J., Schelde, K.: FarmGHG—a model for estimating greenhouse gas emissions from livestock farms, Documentation (2004)

  48. Ross, A., Fübekker, A., Seipelt, F., Steffens, G., Kowalwky, H.: Quantifizierung der Freisetzung von klimarelevanten Gasen aus Güllebehältern mit und ohne Strohhäckselabdeckung. Berlin. The Federal Environment Agency, Germany (1999)

  49. Schimpl, M.: Die Wirkung von Flüssigmistzusätzen auf die Emission der klima- und umweltrelevanten Gase Methan, Ammoniak, Lachgas und Kohlendioxid während der Lagerung von Rinderflüssigmist. University of Natural Resources and Applied Life Sciences, Vienna (2001)

    Google Scholar 

  50. Sommer, S.G., Petersen, S.O., Sogaard, H.T.: Greenhouse gas emission from stored livestock slurry. J. Environ. Qual. 29, 744–751 (2000)

    Article  Google Scholar 

  51. Wulf, S., Maeting, M., Clemens, J.: Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. Ammonia volatilization. J. Environ. Qual. 31, 1789–1794 (2002)

    Article  Google Scholar 

  52. IPCC-GPG: Report on good practice guidance and uncertainty management in national greenhouse gas inventories (IPCC Good Practice Report). In: Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanuel, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K., Tanabe, K. (eds.) Japan (2000)

  53. UNECE: Draft Guidance Documents on Control Techniques and Economic Instruments to the Protocol to Abate Acidification, Eutrophication and Ground-Level Ozone. United Nations Economic Commission for Europe (UNECE). EB.AIR/1999/2, 98–102. Geneva, Switzerland, p. 102 (1999)

  54. Döhler, H.: Ammoniak-Emissionen bei der Ausbringung von Fest- und Flu¨ssigmist sowie Minderungsmaßnahmen. In: Eurich-Menden, B., Döhler, H., Grimm, E. (eds.) Emissionen der Tierhaltung; Kurzfassung der Tagungsbeiträge, pp. 20–21. Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), Darmstadt (2001)

  55. Sonesson, U.: Modelling of the compost and transport processes in the ORWARE simulation model. Swedish University of Agricultural Sciences; Department of Agricultural Engineering (1996)

  56. Finnveden, G., Johansson, J., Lind, P., Moberg, A.: Life Cycle Assessment of Energy from Solid Waste. Stockholms University; Systemekologi och foa; ISBN 91-7056-103-6 (2000)

  57. Edelmann, W., Schleiss, K.: Ökologischer, energetischer und ökonomischer Vergleich von Vergärung, Kompostierung und Verbrennung fester biogener Abfallstoffe. BFE and BUWAL, Switzerland (2001)

  58. Szanto, G., Hamelers, H., Rulkens, W., Veeken, A.: NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour. Technol. 98, 2659–2670 (2007)

    Article  Google Scholar 

  59. Martinez-Blanco, J., Colón, J., Gabarrell, X., Font, X., Sánchez, A., Artola, A., Rieradevall, J.: The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manage. 30, 983–994 (2010)

    Article  Google Scholar 

  60. SHL: Swiss College of Agriculture: Technische Parameter Modell Agrammon. http://agrammon.ch (2010)

  61. Alluvione, F., Bertora, C., Zavattaro, L., Grignani, C.: Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci. Soc. Am. J. 74, 384–395 (2010)

    Article  Google Scholar 

  62. Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, R., van Duin, R., Huijbregts, M.A.J.: Life Cycle Assessment. An Operational Guide to the ISO Standards. Final report, Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML), Leiden University (2001)

  63. Greimel, M., Handler, F., Blumauer, E.: Arbeitszeitbedarf in der österreichischen Landwirtschaft. Bundesanstalt für alpenländische Landwirtschaft Gumpenstein, Irdning (2002)

    Google Scholar 

  64. Werner, F., Althaus, H.-J., Künninger, T., Richter, K., Jungbluth, N.: Life Cycle Inventories of Wood as Fuel and Construction Material. Final report Ecoinvent 2000 No. 9. EMPA Dübendorf, Swiss Center for Life Cycle Inventories (2007)

  65. Stampfer, K.: Optimierung von Holzerntesystemen im Gebirge. Postdoctoral lecture qualification. University of Natural Resources and Life Sciences, Vienna (2002)

    Google Scholar 

  66. Stampfer, K., Limbeck-Lilienau, B., Kanzian, Ch., Viertler, K.: Baumverfahren im Seilgelände—Verfahrensbeispiele; Eigenverlag: FPP Kooperationsabkommen Forst-Platte-Papier, Vienna (2003)

  67. Stampfer, E., Stampfer, K., Trzesniowski, A.: Bereitstellung von Waldhackgut. Forschung im Verbund, Schriftenreihe Band 29. University of Natural Resources and Life Sciences, Vienna (1997)

    Google Scholar 

  68. Stampfer, K.: Harvester Leistungsdaten—MHT Robin, Neuson 11002 HV, Impex Königstiger—Untersuchungsergebnisse aus Aufnahmen bei Geländeneigungen von 20–60%. FPP Kooperationsabkommen Forst-Platte-Papier, Vienna (2001)

  69. Knechtle, N.: Materialprofile von Holzerntesystemen—Analyse ausgewählter Beispiele als Grundlage für ein forsttechnisches Ökoinventar, Diploma thesis, Swiss Federal Institute of Technology, Zürich (1997)

  70. Affenzeller, G.: Integrierte Harvester-Forwarder-Konzepte (Harwarder). Diploma thesis, University of Natural Resources and Life Sciences, Vienna (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Holubar.

Appendix

Appendix

See Tables 8 and 9.

Table 8 Number and type of field work processes per year as well as minimum and maximum yields assumed for different energy crops considered
Table 9 Characterisation of different supply chains for wood-chip production (Bold values represent data needed for the corresponding ecoinvent dataset [27] indicated in the last column of the table)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegl, S., Laaber, M. & Holubar, P. Green Electricity from Biomass, Part II: Environmental Impacts Considering Avoided Burdens from Replacing the Conventional Provision of Additional Functions. Waste Biomass Valor 3, 1–21 (2012). https://doi.org/10.1007/s12649-011-9091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9091-5

Keywords

Navigation