Skip to main content

Advertisement

Log in

Characterization of Solid Digestates: Part 2, Assessment of the Quality and Suitability for Composting of Six Digested Products

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this research was to characterize six organic solid digestates in order to discuss their potential direct agricultural utilisation or their further valorization through an aerobic post-treatment. The studied digestates came from four different sources: waste water treatment sludge, food-processing wastes, agricultural solid wastes and source-selected organic fraction of municipal solid wastes. Physico-chemical, biochemical and biological characteristics showed that a direct use of digestates and application on land as soil amendment or fertilizer is not recommended according to current standards. A post-treatment appeared thus to be necessary in order to obtain commercial amendments or fertilizers. A composting post-treatment of these digestates would assure their full biological stabilization as these organic residues still contain residual biodegradability and present sometimes phyto-toxic risks. The prediction of operational parameters showed that the composting post-treatment of these digestates will probably lead to a limited rise in temperature, require moderate aeration supply and last less than a typical composting treatment of organic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

ADF:

Acid detergent fiber

ADL:

Acid detergent lignin

AW:

Agricultural wastes

CEC:

Cation exchange capacity

CEL:

Cellulose fraction

C/N:

Ratio between carbon and nitrogen

COD:

Chemical oxygen demand

Csol :

Carbon soluble content

CV:

Coefficient of variation

∆Tmax :

Maximum rise of temperature in 300l composting pilot-scale

DM:

Dry matter

DRI:

Dynamic respirometric index

eBF:

Easily biodegradable fraction

FPW:

Food processing wastes

GI:

Germination index

HEMI:

Hemicellulose fraction

I.E:

Inhabitant equivalent

kO2 :

Slope of oxygen consumption curve

LIGN:

Lignin content

NDL:

Neutral detergent fiber

NH4 + :

Ammonium content

Norga :

Organic nitrogen content

O2 :

Total oxygen consumption

OM:

Organic matter

OUR:

Oxygen uptake rate

Qmin :

Minimum air flow rate required

Qtot :

Global need in aeration supply

RBP:

Residual biodegradable potential

SOLU:

Soluble fraction

SS-OFMSW:

Source selected organic fraction of municipal solid wastes

TC:

Total carbon content

TKN:

Total Kjeldahl nitrogen content

TN:

Total nitrogen content

tstab :

Time required for biological stabilization

TP:

Total phosphorous content

VFA:

Volatile fatty acids

WWTS:

Waste water treatment sludge

References

  1. European Parliament and Council: Council Directive 75/442/EEC of 15 July 1975 on waste. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31975L0442:EN:HTML. (1975) Accessed 10 Nov 1975

  2. European Parliament and Council: Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0009:0021:EN:PDF (2006). Accessed 22 Oct 2010

  3. European Parliament and Council: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:0030:en:PDF (2008). Accessed 22 Oct 2010

  4. Banks, C.J., Salter, A.M., Chesshire, M.: Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe. Water Sci. Technol. 55(10), 165–173 (2007)

    Article  Google Scholar 

  5. Tricase, C., Lombardi, M.: State of the art and prospects of Italian biogas production from animal sewage: technical-economic considerations. Renew. Energy 34(3), 477–485 (2009)

    Article  Google Scholar 

  6. Weiland, P.: Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 6(3), 302–309 (2006)

    Article  Google Scholar 

  7. EurObserv’ER Database: Biogas Barometer. http://www.eurobserv-er.org/pdf/baro186_a.pdf (2008). Accessed 10 Nov 2010

  8. Kelleher, K.: Anaerobic digestion outlook for MSW streams. BioCycle 48(8), 51–55 (2007)

    Google Scholar 

  9. ADEME: Le traitement des ordures ménagères en France en 2008. http://www2.ademe.fr/servlet/KBaseShow?sort=-1&cid=96&m=3&catid=24147 (2008). Accessed 10 Nov 2010

  10. Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: part 1, review of exisiting indicators to assess solid digestates agricultural use. Waste Biomass Valor. doi:10.1007/s12649-010-9051-5 (2010)

  11. AFNOR: NF EN 12880 Caractérisation des boues—Détermination de la teneur en matière sèche et de la teneur en eau. (2000)

  12. AFNOR: NF EN 12879 Caractérisation des boues—Détermination de la perte au feu de la matière sèche. (2000)

  13. AFNOR: NF T 90-101 Qualité de l’eau—Détermination de la demande chimique en oxygène (DCO). (2001)

  14. AFNOR: NF ISO 10694 Qualité du sol—Dosage du carbon organique et du carbone total après combustion sèche (analyse élémentaire). (1995)

  15. AFNOR: NF EN 13137 Caractérisation des déchets—Dosage du carbon organique total (COT) dans les déchets, boues et sédiments. (2001)

  16. AFNOR: NF EN 1484 Analyse de l’eau—Lignes directrices pour le dosage du carbone organique total (TOC) et carbone organique dissous (COD). (1997)

  17. AFNOR: NF EN 13342 Caractérisation des boues—Détermination de l’azote total Kjeldahl. (2000)

  18. Van Soest, P.J., Wine, R.H.: Use of detergents in the analysis of fibrous feeds. IV—Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50, 50–55 (1967)

    Google Scholar 

  19. AFNOR: NF X31-130 Qualité des sols—Méthodes chimiques : Détermination de la capacité d’échange cationique (CEC) et des cations extractibles. (1999)

  20. AFNOR: NF X31-108 Qualité des sols—Détermination des cations Ca++, Mg++, K+, Ca+ extractibles par l’acétate d’ammonium. (2002)

  21. Komilis, D.P., Tziouvaras, I.S.: A statistical analysis to assess the maturity and stability of six composts. Waste Manage. 29(5), 1504–1513 (2009)

    Article  Google Scholar 

  22. de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J.C., Petiot, C.: Comparison of five organic wastes regarding their behaviour during composting: part 1, biodegradability, stabilization kinetics and temperature rise. Waste Manag. 30(3), 402–414 (2009)

    Article  Google Scholar 

  23. Druilhe, C., De Guardia, A., Berthe, L., Tremier, A., Martel, J.-L.: Measurement of waste and compost biodegradability by respirometry. Practical applications. TSM 5, 44–57 (2007)

    Google Scholar 

  24. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A.: Quality assessment of composts in the Greek market: the need for standards and quality assurance. J. Environ. Manage. 80(1), 58–65 (2006)

    Article  Google Scholar 

  25. Gomez, X., Cuetos, M.J., Garcia, A.I., Moran, A.: Evaluation of digestate stability from anaerobic process by thermogravimetric analysis. Thermochim. Acta 426(1–2), 179–184 (2005)

    Article  Google Scholar 

  26. Komilis, D.P., Ham, R.K.: The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manage. 23(5), 419–423 (2003)

    Article  Google Scholar 

  27. Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53(8), 233–241 (2006)

    Article  Google Scholar 

  28. Harada, Y., Inoko, A.: The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 26(1), 127–134 (1980)

    Google Scholar 

  29. Inbar, Y., Chen, Y., Hadar, Y.: Humic substances formed during the composting of organic matter. Soil Sci. Soc. Am. J. 54, 1316–1323 (1990)

    Article  Google Scholar 

  30. Garcia, A.J., Esteban, M.B., Marquez, M.C., Ramos, P.: Biodegradable municipal solid waste: characterization and potential use as animal feedstuffs. Waste Manage. 25(8), 780–787 (2005)

    Article  Google Scholar 

  31. Bernal, M.P., Paredes, C., Sanchez-Monedero, M.A., Cegarra, J.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63(1), 91–99 (1998)

    Article  Google Scholar 

  32. Abdelhamid, M.T., Horiuchi, T., Oba, S.: Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 93(2), 183–189 (2004)

    Article  Google Scholar 

  33. Paavola, T., Rintala, J.: Effects of storage on characteristics and hygienic quality of digestates from four co-digestion concepts of manure and biowaste. Bioresour. Technol. 99(15), 7041–7050 (2008)

    Article  Google Scholar 

  34. Tambone, F., Genevini, P., D’Imporzano, G., Adani, F.: Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 100(12), 3140–3142 (2009)

    Article  Google Scholar 

  35. Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5), 577–583 (2010)

    Article  Google Scholar 

  36. AFNOR: FD CR 13456 Amendements du sol et supports de culture—Etiquetage, spécifications et listes de produits. (2001)

  37. Baffi, C., Dell’Abate, M.T., Nassisi, A., Silva, S., Benedetti, A., Genevini, P.L., Adani, F.: Determination of biological stability in compost: a comparison of methodologies. Soil Biol. Biochem. 39(6), 1284–1293 (2007)

    Article  Google Scholar 

  38. Ponsa, S., Gea, T., Alerm, L., Cerezo, J., Sanchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manage. 28(12), 2735–2742 (2008)

    Article  Google Scholar 

  39. Fricke, K., Santen, H., Wallmann, R.: Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Manage. 25(8), 799–810 (2005)

    Article  Google Scholar 

  40. Cossu, R., Raga, R.: Test methods for assessing the biological stability of biodegradable waste. Waste Manage. 28(2), 381–388 (2008)

    Article  Google Scholar 

  41. Poggi-Varaldo, H.M., Trejo-Espino, J., Fernandez-Villagomez, G., Esparza-Garcia, F., Caffarel-Mendez, S., Rinderknecht-Seijas, N.: Quality of anaerobic compost from paper mill and municipal solid wastes for soil amendment. Water Sci. Technol. 40(11–12), 179–186 (1999)

    Google Scholar 

  42. Gunaseelan, V.N.: Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour. Technol. 98(6), 1270–1277 (2007)

    Article  Google Scholar 

  43. Tognetti, C., Mazzarino, M.J., Laos, F.: Improving the quality of municipal organic waste compost. Bioresour. Technol. 98(5), 1067–1076 (2007)

    Article  Google Scholar 

  44. Mathur, S.P., Owen, G., Dinel, H., Schnitzer, M.: Determination of compost biomaturity.1. Literature-review. Biol. Agric. Hortic. 10(2), 65–85 (1993)

    Google Scholar 

  45. Kapanen, A., Itavaara, M.: Ecotoxicity tests for compost applications. Ecotox. Environ. Safe. 49(1), 1–16 (2001)

    Article  Google Scholar 

  46. Kim, M., Ahn, Y.H., Speece, R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 36(17), 4369–4385 (2002)

    Article  Google Scholar 

  47. AFNOR: NF U44-095 Amendements organiques—Composts contenant des matières d’intérêt agronomique, issues du traitement des eaux. (2002)

  48. AFNOR: NF U44-051 Amendements organiques—Dénominations, spécifications et marquage. (2006)

  49. AFNOR: NF U42-001 Engrais—Dénominations et spécifications. (2009)

  50. European Commission: Working document Biological treatment of biowaste 2nd draft. http://www.compost.it/www/pubblicazioni_on_line/biod.pdf (2001). Accessed 10 Nov 2010

  51. BSI: PAS 110:2010 Specification for whole digestate, separated liquor and separated fibre derived from the anaerobic digestion of source-segregated biodegradable materials. (2010)

  52. Siebert, S.: Quality requirements and quality assurance of digestion residuals in Germany. In: ECN/ORBIT Worshop The future for Anaerobic Digestion of Organic Waste in Europe. Nüremberg, Germany (2008)

  53. Hartmann, H., Ahring, B.K.: Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci. Technol. 53(8), 7–22 (2006)

    Article  Google Scholar 

  54. Forster-Carneiro, T., Perez, M., Romero, L.I.: Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour. Technol. 99(15), 6763–6770 (2008)

    Article  Google Scholar 

  55. Igoni, A.H., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T., Probert, S.D.: Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl. Energy 85(6), 430–438 (2008)

    Article  Google Scholar 

  56. Tremier, A., de Guardia, A., Mallard, P.: Indicateurs de stabilisation de la matière organique au cours du compostage et indicateurs de stabilité des composts: analyse critique et perspectives d’usage. TSM 10, 105–129 (2007)

    Google Scholar 

  57. de Guardia, A., Tremier, A., Martinez, J.: Chapter 16—Indicators for determination of stability of composts and recycled organic wastes. In: Lens, P., Hamelers, B., Hoitink, H., Bidlingmaier, W. (eds.) Resource Recovery and Reuse in Organic Solid Waste Management, pp. 338–376. IWA Publishing, London (2004)

    Google Scholar 

  58. Berthe, L.: Etude et compréhension des processus de biodégradation—Estimation de la biodégradabilité de matrices organiques solides. p. 240. Université de Provence Aix-Marseille I (2007)

Download references

Acknowledgments

This research was project funded by the French Agency for Environment and Energy Management (ADEME) and Suez-Environment and carried out in Cemagref research centre in Rennes (Brittany, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Teglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teglia, C., Tremier, A. & Martel, JL. Characterization of Solid Digestates: Part 2, Assessment of the Quality and Suitability for Composting of Six Digested Products. Waste Biomass Valor 2, 113–126 (2011). https://doi.org/10.1007/s12649-010-9059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9059-x

Keywords

Navigation