Skip to main content
Log in

Multiple solitons solutions, lump solutions and rogue wave solutions of the complex cubic Ginzburg–Landau equation with the Hirota bilinear method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we obtain the exact solutions of the (1+1) dimensional complex cubic Ginzburg–Landau equation (CCGLE) by using the Hirota bilinear method, this equation is a universal model for the evolution of the envelope of slowly varying waves packets in nonlinear dissipative media. Different types of solutions including solitons, lump and rogue wave solutions are gotten by taking different transformations. Besides, the physical significance of these solutions of CCGLE can be understood better through drawing \(\text{3D, } \text{2D }\) and contour plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available due to individual privacy but are available from the corresponding author on reasonable request.

References

  1. L C Crasovan and B A Malomed Physics Review E 62 1322 (2000)

    Article  ADS  Google Scholar 

  2. G A Zakeri and E Yomba Physics Review E 91 062904 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. B A Malomed Chaos 17 037117 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. G A Zakeri and E Yomba Physics Review A 377 148 (2013)

    ADS  Google Scholar 

  5. I S Aranson and L Kramer Reviews of Modern Physics 4 99 (2002)

    Article  ADS  Google Scholar 

  6. A Sigler and B A Malomed Physica D-Nonlinear Phenonmena 212 305 (2005)

    Article  ADS  Google Scholar 

  7. H Rezazadeh Optik 167 218 (2018)

    Article  ADS  Google Scholar 

  8. G Akram and N Maha Optik 164 210 (2018)

    Article  ADS  Google Scholar 

  9. N Guzel and M Bayram Applied Mathematics and Computation 174 1279 (2006)

    Article  MathSciNet  Google Scholar 

  10. M S Hashemi, M Inc and M Bayram Revista Mexicana de Física 65 529–535 (2019)

    Article  MathSciNet  Google Scholar 

  11. Z Korpinar, M Inc, D Baleanu and M Bayram Journal of Taibah University for Science 13 813–819 (2019)

    Article  Google Scholar 

  12. F Batool and G Akram Optical and Quantum Electronics 49 129 (2017)

    Article  Google Scholar 

  13. D J B Lloyd, A R Champneys and R E Wilson Physica D-Nonlinear Phenonmena 204 240 (2005)

    Article  ADS  Google Scholar 

  14. A M Wazwaz Applied Mathematics Letters 19 1007 (2006)

    Article  MathSciNet  Google Scholar 

  15. S Ahmad, E E Mahmoud, S Saifullah, A Ullah, S Ahmad, A Akgül and S M El Din Results in Physics 51 106736 (2023)

    Article  Google Scholar 

  16. N Efremidis, K Hizanidis, H E Nistazakis, D J Frantzeskakis and B A Malomed Physics Review E 62 7410 (2000)

    Article  ADS  Google Scholar 

  17. W P Hong Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences 12 757 (2008)

    Article  ADS  Google Scholar 

  18. E P Ippen Applied Physics B 58 159 (1994)

    Article  Google Scholar 

  19. P Kolodner Physical Review Letters 66 1165 (1991)

    Article  ADS  Google Scholar 

  20. M C Cross and P C Hohenberg Reviews of Modern Physics 65 851 (1993)

    Article  ADS  Google Scholar 

  21. M E Victor, H G Emilio and P Oreste Chaotic Dynamics 9 2209 (2019)

    Google Scholar 

  22. H Z Cong and M N Gao Journal of Dynamics and Differential Equations 23 1053 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. S Ahmad, J Lou, M A Khan and M U Rahman Physica Scripta 99 015249 (2024)

    Article  ADS  Google Scholar 

  24. P Cui Results in Physics 22 103919 (2021)

    Article  Google Scholar 

  25. Y F Hua, B L Guo, W X Mac and X Lü Applied Mathematical Modelling 74 184 (2019)

    Article  MathSciNet  Google Scholar 

  26. L Na Nonlinear Dynamics 82 311 (2015)

    Article  MathSciNet  Google Scholar 

  27. A M Wazwaz Mathmatical Methods in the Applied Sciences 82 1580 (2011)

    Article  ADS  Google Scholar 

  28. S T R Rizvi, A R Seadawy, K Ali, M Younis and M A Ashra Optical and Quantum Electronics 54 212 (2022)

    Article  Google Scholar 

  29. S Ahmad, S Saifullah, A Khan and A M Wazwaz Communications in Nonlinear Science and Numerical Simulation 119 107117 (2023)

    Article  Google Scholar 

  30. M U Rahman, M Alqudah, M A Khan, B E H Ali, S Ahmad, E E Mahmoud and M Sun Results in Physics 56 107269 (2024)

    Article  Google Scholar 

  31. A Khan, S Saifullah, S Ahmad, J Khan and D Baleanu Nonlinear Dynamics 111 5743 (2023)

    Article  Google Scholar 

  32. A Yusuf, T A Sulaiman, E M Khalil, M Bayram and H Ahmad Results in Physics 21 103775 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanxi (No. 202103021224068).

Funding

Funding was provided by Natural Science Foundation of Shanxi (Grant number: 202103021224068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Gao, B. Multiple solitons solutions, lump solutions and rogue wave solutions of the complex cubic Ginzburg–Landau equation with the Hirota bilinear method. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03242-z

Keywords

Navigation