Skip to main content
Log in

The impact of Si substitution on Ge sites in full heusler compound Ru2VGe: stability analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study presents a comprehensive analysis of the stability of Ru2VGe1-xSix for x = [0, 0.25, 0.5, 0.75, 1] compounds using a first-principle full-potential linearized augmented plane wave method implemented in a computational code based on WIEN2k. The article sheds light on the behavior of different concentrations of Si and their impact on the magneto-structural, thermodynamic, and mechanical stability, resulting in the prediction of five compounds with varying magnetism based on their compositions, including Fm-3 m cubic for Ru2VGe and Ru2VSi, Pm-3 m cubic structure for x = 0.25, 0.75, and P4/mmm tetragonal structure for x = 0.5. A tiny energy difference between phases may lead to a low magnetic transition temperature TMFA for all compounds except the tetragonal one, which keeps the antiferromagnetic phase above room temperature. Their formation and cohesive energies prove their stability. A regular solution model was used to investigate the thermodynamic stability of the alloys, revealing a miscibility gap at a composition range of 0.537 ≤ x ≤ 1, with the critical temperature of Tc = 986.24 K at a specific composition of xC = 0.801. The elastic properties showed the compounds are stable against external stresses and deformations with ductility and good thermal conductivity, hardness, and machinability. The anisotropy behavior moves from anisotropic in Ru2VGe to semi-isotropic by Si substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. H Abbassa, S Hadjri-Mebarki, B Amrani and T Belaroussi J. Alloys Compd. 637 557 (2015).

    Article  Google Scholar 

  2. T Graf and C Felser Solid State Chem. 39 1 (2011).

    Article  Google Scholar 

  3. M El, A Monir, H B A Abdiche, R K S Bin, O X Wang, D P R A Bouhemadou and W K A C H Voon J. Mol. Struct. Theochem. 777 2197 (2017)

    Google Scholar 

  4. M Belkhouane, S Amari, A Yakoubi, A Tadjer, S Méçabih and G Murtaza J. Magn. Magn. Mater. 377 211 (2015).

    Article  ADS  Google Scholar 

  5. M I Katsnelson, V Y Irkhin, L Chioncel and A I Lichtenstein Mod. Phys. 80 315 (2008).

    Article  ADS  Google Scholar 

  6. C (Claudia) Felser and A Hirohata Heusler alloys: properties, growth, applications (2015).

  7. B Balke, S Wurmehl, G H Fecher, C Felser and J Kübler Sci. Technol. Adv. Mater. 9 (2008)

  8. A Bentouaf J. Supercond. Nov. Magn. (2020)

  9. M Yin, P Nash and S Chen Intermetallics 57 34 (2015)

  10. D C Gupta and I H Bhat J. Magn. Magn. Mater. 374 209 (2015).

    Article  ADS  Google Scholar 

  11. B G Yalcin J. Magn. Magn. Mater. 408 137 (2016)

  12. M Gilleßen PhD thesis (RWTH Aachen University, Aachen, Germany) (2009)

  13. J Kapil, P Shukla and A Pathak Eur. Phys. J. Plus 136 (2021)

  14. S Mizusaki, A Douzono, T Ohnishi, Y Nagata, T C Ozawa, H Samata and Y Noro J. Phys. Conf. Ser. 200 (2010)

  15. Z Aarizou, S Bahlouli and M Elchikh EPJ Web Conf. 44 34404008 (2013)

  16. Z Aarizou, S Bahlouli and M Elchikh Mod. Phys. Lett. B 29 (2015)

  17. S Bahlouli, Z Aarizou and M. Elchikh Mod. Phys. Lett. B 27 1 (2013).

    Article  Google Scholar 

  18. P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)

  19. W Kohn and L J S H A M Phys Rev. 140 A1133 (1965).

    Google Scholar 

  20. P Blaha, K Schwarz, G K H M D K J Luitz, R L F Tran and L D Marks WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria: Vienna University of technology) (2019)

    Google Scholar 

  21. J P Perdew and K Burke Rev. Lett. 77 3865 (1996).

    Article  ADS  Google Scholar 

  22. O Heusler Ann. Phys. 411 155 (1934)

  23. A Kyono, S A Gramsch, Y Nakamoto, M Sakata, M Kato and T Tamura Mineral. 100 1752 (2015).

    ADS  Google Scholar 

  24. H W King and Y Lo J. Mater. Sci. 1 79 (1921).

    Article  ADS  Google Scholar 

  25. C P Kempter Phys. Status Solidi 18 K117 (1966)

  26. J Balluff, K Diekmann and G Reiss Rev. Mater. 1 1 (2017).

    Google Scholar 

  27. D Jiang, M Wu, D Liu, F Li, M Chai and S Liu Metals (Basel). 9 (2019)

  28. B R Sahu Mater. Sci. Eng. B 49 74 (1997)

  29. J E Saal, S Kirklin, M Aykol, B Meredig and C Wolverton Jom 65 1501 (2013).

    Article  Google Scholar 

  30. P H Mayrhofer and D Music Phys. Lett. 88 10 (2006).

    Google Scholar 

  31. A Manzoor, S Pandey, D Chakraborty and S R Phillpot Mater. 4 1 (2018).

    Google Scholar 

  32. M Jamal, M Bilal and I Ahmad J. Alloys Compd. 735 569 (2018).

    Article  Google Scholar 

  33. A Bouhemadou and R Khenata J. Mol. Struct. THEOCHEM 777 5 (2006).

    Article  Google Scholar 

  34. F Mouhat and F X Coudert Phys. Rev. B - Condens. Matter Mater. Phys. 90 (2014)

  35. F Peng, D Chen and X Yang Solid State Commun. 149 2135 (2009)

  36. M A Hadi, M T Nasir, M Roknuzzaman, M A Rayhan and S H Naqib Status Solidi Basic Res. 253 2020 (2016).

    Article  ADS  Google Scholar 

  37. M I Naher, M A Afzal and S H Naqib Results Phys. 28 104612 (2021)

  38. M I Naher and S H Naqib Sci. Rep. 11 1 (2021).

    Article  Google Scholar 

  39. Z Sun, D Music, R Ahuja and J M Schneider Phys. Rev. B - Condens. Matter Mater. Phys. 71 3 (2005)

  40. Y Zhang, H X Chen and L Duan J. Alloys Compd. 749 283 (2018).

    Article  Google Scholar 

  41. S I Ranganathan and M Ostoja-Starzewski Phys. Rev. Lett. 101 3 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Elchikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjadji, I., Benkhettou, NE., Hiadsi, S. et al. The impact of Si substitution on Ge sites in full heusler compound Ru2VGe: stability analysis. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03232-1

Keywords

Navigation