Skip to main content
Log in

Calculation of the mechanical and magnetic stability of the full Heusler alloys Ru2MnX (X = Ta, V): using ab initio approach

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The first principal calculation of structural magneto-electric, elastic, thermoelectric, and thermodynamic properties of Ru2MnX (X = Ta, V) alloys using FP-LMTO method based on density functional theory (DFT) implemented with generalized gradient approximation (GGA) has been interpreted in detail in this paper. The investigations of the structural properties show that the two studied HAs share more energetically stable in the ferromagnetic ground state of L21-type structure. Our electronic results such as band structure and density of state obtained using GGA approximation indicate that Ru2MnTa and Ru2MnV alloys perform a metallic behavior around the Fermi level; they also satisfy the Slater-Pauling rule with both magnetic moment values of 4.12 μB for Ru2MnTa alloy and 3.99 μB for Ru2MnV. The interpreted elastic criteria confirm the mechanical stability of the two HAs which are investigated with good agreement. For thermodynamic property, the volume change (V), bulk modulus (B), heat capacity (Cv), and Debye temperature are gotten by model of Debye quasi-harmonic. Additionally, the thermoelectric properties that have been investigated show that our materials are promoters for thermal applications because of the figure of merit value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. Data is available upon request from the authors.

References

  1. K. Inomata, S. Okamura, R. Goto, N. Tezuka, Large tunneling magneto-resistance at room temperature using a Heusler alloy with the B2 structure. Jpn. J. Appl. Phys. 42, L419 (2003)

    Article  CAS  Google Scholar 

  2. S. Kämmerer, A. Thomas, A. Hütten, G. Reiss, Appl. Phys. Lett. 85(1), 79–81 (2004)

    Article  Google Scholar 

  3. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, H. Kubota, Giant tunneling magnetoresistance in magnetic tunnel junctions. Appl. Phys. Lett. 88, 192508 (2006)

    Article  Google Scholar 

  4. W. Wang, H. Sukegawa, R. Shan et al., Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited Co2FeAl/MgO/CoFe magnetic tunnel junctions. Appl Phys Lett. 95, 182502 (2009)

    Article  Google Scholar 

  5. S. Tsunegi, Y. Sakuraba, M. Oogane, K. Takanashi, Y. Ando, Large tunnel magnetoresistance in magnetic tunnel junctions using a Heusler alloy electrode and a MgO barrier, Appl. Phys. Lett. 93112506 (2008).

  6. P. Klaer, M. Kallmayer, C.G.F. Blum, T. Graf, J. Barth, B. Balke, G.H. Fecher, C. Felser, H.J. Elmers, Tailoring the electronic structure of half-metallic Heusler alloys. Phys. Rev. B 80, 144405 (2009)

    Article  Google Scholar 

  7. Yoshiyuki Nakata, Kazuko Inoue, First principle calculations on structures and magnetic properties in non-stoichiometric Ni-Mn-Ga shape memory alloys, Materials Transactions, 452661(2004).

  8. G. Wu, C. Yu, L. Meng, J. Chen, F. Yang, S. Qi, W. Zhan, Z. Wang, Y. Zheng, C. Zhao, Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett. 75, 2990 (1999)

    Article  CAS  Google Scholar 

  9. Entel, P. et al. (2012). Phase diagrams of conventional and inverse functional magnetic Heusler alloys: new theoretical and experimental investigations. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_2

  10. Vasil'ev, A. N. and Bozhko, A. D. and Khovailo, V. V. and Dikshtein, I. E. and Shavrov, V. G. and Buchelnikov, V. D. and Matsumoto, M. and Suzuki, S. and Takagi, T. and Tani, J,Phys. Rev. B,59,2,1113--1120,0,1999, https://doi.org/10.1103/PhysRevB.59.1113

  11. S. Tsunegi, Y. Sakuraba, M. Oogane, K. Takanashi, Y. Ando, Large tunnel magnetoresistance in magnetic tunnel junctions using a Co2MnSi Heusler alloy electrode and a MgO barrier, Appl. Phys. Lett. 93112506 (2008).

  12. G.Q. Yu, L. Chen, S. Rizwan, J.H. Zhao, K. Xu, X.F. Han, Improved tunneling magnetoresistance in (Ga, Mn)As/AlOx/CoFeB magnetic tunnel junctions. Appl Phys Lett 98, 262501 (2011)

    Article  Google Scholar 

  13. K. Inomata, S. Okamura, A. Miyazaki, N. Tezuka, M. Wojcik, E. Jedryka, Structural and magnetic properties and tunnel magnetoresistance for Co2 (Cr, Fe) Al and Co2FeSi full-Heusler alloys, J. Phys. D: Appl. Phys. 39816 (2006).

  14. C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner, Transport properties of pure and doped MNiSn (M=Zr, Hf) Phys. Rev. B 59, 8615 (1999)

    Article  CAS  Google Scholar 

  15. D.M.Rowe, Thermoelectrics and its Energy Harvesting, Boca Raton ed., CRC Press, (2012).

  16. S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman, M. Venkatesan, M. Coey, S. Curtarolo, Accelerated discovery of new magnets in the Heusler alloy family, Science Advances 3e1602241 (2017).

  17. GAID, FerielOuarda, Fatima Zohra BOUFADI, Nadjia Tayebi, Mohammed AMERI, Amel MENTEFA, Loubna BELLAGOUN, Ali Abu Odeh&Y. Al-Douri, Theoretical investigation of structural, electronic, elastic, magnetic, thermodynamic, and thermoelectric properties of Ru2MnNb Heusler alloy: FP-LMTO method, Emergent Materials https://doi.org/10.1007/s42247-021-00229-y

  18. ŞU.L.E. Uğur, M. Güler, G.Ö.K.A.Y. Uğur, E. Güler, Elastic, mechanical, optical and magnetic properties of Ru2MnX (X= Nb, Ta, V) Heusler alloys. J. Magn. Magn. Mater. 523, 167614 (2020)

    Article  Google Scholar 

  19. For a review, “see Théorie of the Inhomogeneous Electron Gas” (eds.Lunqvist,S. and march,S.H.).Plenum, New York, (1983).

  20. S.Y. Savrasov, D. Savrasov, Phys. Rev. B 46, 12181 (1992)

    Article  CAS  Google Scholar 

  21. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996)

    Article  CAS  Google Scholar 

  22. J. P. Perdew, Wang Y.Phys Rev B4612947(1992).

  23. M.A. Blanco, E. Francisco, Comput. Phys. Commun. 158, 57 (2004)

    Article  CAS  Google Scholar 

  24. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  CAS  Google Scholar 

  25. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  CAS  Google Scholar 

  26. M. Born, K. Huang, in: Clarendon (Ed.), Dynamical Theory of Crystal Lattices, Oxford. University Press (1956).

  27. M. Born, On the stability of crystal lattices. Proc. Cambridge. Philos. Soc. 36, 160 (1940)

    Article  CAS  Google Scholar 

  28. C.H. Jenkins, S.K. Khanna, Mech. Mater. 62, 1125 (2005)

    Google Scholar 

  29. H. Fu, D. Li, F. Peng, T Gao and X Cheng Computational Materials Science 44, 774 (2008)

    Article  CAS  Google Scholar 

  30. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  CAS  Google Scholar 

  31. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  CAS  Google Scholar 

  32. A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 95 (1819)

    Google Scholar 

  33. H. Alqurashi, R. Haleoot, B. Hamad, First-principles investigations of Zr-based quaternary Heusler alloys for spintronic and thermoelectric applications. Comput. Mater. Sci. 210, 111477 (2022)

    Article  CAS  Google Scholar 

  34. H. Alqurashi, R. Haleoot, B. Hamad, First-principles investigations of the electronic, magnetic and thermoelectric properties of VTiRhZ (Z= Al, Ga, In) quaternary Heusler alloys. Mater. Chem. Phys. 278(15), 125685 (2022)

    Article  CAS  Google Scholar 

  35. Hind Alqurashi, Bothina Hamad. Magnetic structure, mechanical stability and thermoelectric properties of VTiRhZ (Z = Si, Ge, Sn) quaternary Heusler alloys: first-principles calculations. Applied Physics A volume 127, Article number: 799 (2021).

Download references

Acknowledgements

Dr. Boufadi F.Z. expresses his gratitude to all the authors for their contributions. The University Djillali Liabes of Sidi Bel Abbes (two research project PRFU—B00L02UN220120180016 and B00L02UN220120220013) sponsored this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Boufadi Fatima Zohra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohra, B.F., Gaid, F.O., Amal, M. et al. Calculation of the mechanical and magnetic stability of the full Heusler alloys Ru2MnX (X = Ta, V): using ab initio approach. emergent mater. 6, 927–941 (2023). https://doi.org/10.1007/s42247-022-00438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00438-z

Keywords

Navigation