Skip to main content
Log in

Positron annihilation lifetime and doppler broadening spectroscopies studies of defects in nano TiN crystal under gamma irradiation and high temperature

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, TiN nanocrystals underwent initial irradiation at room temperature using a 60Co gamma source, employing four absorption doses (50, 200, 900, and 3500 kGy) within a Gamma MRX-25 unit. Subsequently, they were subjected to heating at 1173 K in a Linn™ HT-1800 oven under vacuum conditions of 10–6 Torr for Positron analysis. The investigation into the mechanism of defect formation employed annihilation lifetime and Doppler broadening annihilation spectroscopies. Pertaining to the Positron Annihilation Lifetime Spectroscopy (PALS) studies, two distinct lifetime components were discerned across all samples. The τ1 lifetime component ranged between 155 and 159 ps. A marginal reduction (from 81.67 to 81.51%) was observed in the corresponding I1 intensity. Analysis of the S parameter derived from Doppler Broadening Annihilation Spectroscopy (DBAS) furnished insights into the presence of vacancy defects within the TiN nanocrystals. The diminishing trend in the S parameter with increasing positron energy or depth of positron implantation indicates a decline in the density and concentration of subsurface defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y Suzuki, T S Suzuki, K Hirao, T Tsuchiya and H Nagata Adv Ceram Technol Prod 3 578 (2012)

    Google Scholar 

  2. S F Samadov et al Ceram Int. 50 3727 (2024)

    Article  Google Scholar 

  3. M N Mirzayev et al J Mater Res Technol. 27 1724 (2023)

    Article  Google Scholar 

  4. E Bailey, N M T Ray, A L Hector, P Crozier, W T Petuskey and P F McMillan Materials 4 1747 (2011)

    Article  ADS  Google Scholar 

  5. S Yu, Q Zeng and A R Oganov Phys Chem Chem Phys. 17 11763 (2015)

    Article  Google Scholar 

  6. H Yu, T Tan, W Wu and C Tian Curr Appl Phys. 12 152 (2012)

    Article  ADS  Google Scholar 

  7. J Zhang and H Hu Mater Today Chem. 11 42 (2019)

    Article  Google Scholar 

  8. J Ham, Y Lee, S C Yoo and M P Short J Nucl Mater. 549 152870 (2021)

    Article  Google Scholar 

  9. B D Wirth Sci. 318 923 (2007)

    Article  Google Scholar 

  10. S J Zinkle and G S Was Acta Mater. 61 735 (2013)

    Article  ADS  Google Scholar 

  11. F A Selim Mater Charact. 174 110952 (2021)

    Article  Google Scholar 

  12. Sh B Utamuradova, ShKh Daliev and D A Rakhmanov Adv Phys Res. 5 183 (2023)

    Google Scholar 

  13. P Horodek, L H Khiem and K Siemek Comm Phys. 29 501 (2019)

    Article  Google Scholar 

  14. W Mader and H F Fischmeister Thin Solid Films. 182 41 (1989)

    Article  Google Scholar 

  15. K Siemek, P Horodek, V A Skuratov, J Waliszewski and A Sohatsky Vacuum. 190 110282 (2021)

    Article  ADS  Google Scholar 

  16. C H Ying and L F Hing J Vac Sci Tech. 23 1006 (2005)

    Article  Google Scholar 

  17. P Knights, A S Saleh, P C Rice-Evans, S J Bull, F Elstner, F Richter and H Kupfer J Phys Condens Matter. 8 2479 (1996)

    Article  ADS  Google Scholar 

  18. S J Bull, P C Evans and A S Saleh Surf Coat Technol. 78 42 (1996)

    Article  Google Scholar 

  19. J Brunner and A J Perry Thin Solid Films. 163 49 (1988)

    Article  ADS  Google Scholar 

  20. A D Pogrebnjak, A A Bagdasaryan, P Horodek, V Tarelnyk, V V Buranich, H Amekura and N Okubo Mater Lett. 303 130548 (2021)

    Article  Google Scholar 

  21. K Siemek, A Olejniczak and L N Korotkov Appl Surf Sci. 578 151807 (2022)

    Article  Google Scholar 

  22. A S Abiyev Radiat Phys Chem. 218 111638 (2024)

    Article  Google Scholar 

  23. J A Sawicki J Nucl Mater. 374 248 (2008)

    Article  ADS  Google Scholar 

  24. M N Mirzayev Ceram Int. 46 2816 (2020)

    Article  Google Scholar 

  25. M N Mirzayev, Kh F Mammadov, V A Skuratov, E Demir, S H Jabarov, N A Ismayilova, S Biira, B Abdurakhimov and E Popov J Alloys Compd. 801 151 (2019)

    Article  Google Scholar 

  26. J Dryzek and P Horodek Tribol Lett. 65 117 (2017)

    Article  Google Scholar 

  27. J Kansy Nucl Instrum Methods Phys Res. 374 235 (1996)

    Article  ADS  Google Scholar 

  28. P Horodek, A G Kobets, I N Meshkov, A A Sidorin and O S Orlov Nukleonika 60 725 (2015)

    Article  Google Scholar 

  29. J Dryzek, Home page - Jerzy Dryzek - Research (ifj.edu.pl)

  30. K Eid, M H Sliem and A M Abdullah Nanoscale Adv. 3 5016 (2021)

    Article  ADS  Google Scholar 

  31. A D Buravov Prot Met Phys Chem. 55 1015 (2019)

    Google Scholar 

  32. T Troev and E Popov Status Solidi C. 6 2373 (2009)

    Article  Google Scholar 

  33. J Čížek Acta Phys Pol. 137 254 (2020)

    Google Scholar 

  34. H Klym, I Karbovnyk, S Piskunov and A I Popov Nanomaterials. 11 3373 (2021)

    Article  Google Scholar 

  35. P Horodek, K Siemek, J Dryzek and M Wróbel Materials. 10 1343 (2017)

    Article  ADS  Google Scholar 

  36. J P Schaffer Surf Coat Technol. 36 593 (1988)

    Article  Google Scholar 

  37. S Ishibashi, T Ohdaira and R Suzuki J Cryst Growth. 311 3075 (2009)

    Article  ADS  Google Scholar 

  38. J Salamania, A F Farhadizadeh, K M C Kwick, I C Schramm, T W Hsu, L J S Johnson and L Rogström J Vac Sci Technol A. 41 063413 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Azerbaijan Science Foundation for providing financial support through Grant No: AEF-MCG-2022-1(42)-12/03/1-M-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matlab N. Mirzayev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiyev, A.S., Huseynov, E.M., Mirzayev, M.N. et al. Positron annihilation lifetime and doppler broadening spectroscopies studies of defects in nano TiN crystal under gamma irradiation and high temperature. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03229-w

Keywords

Navigation