Skip to main content

Structural Properties 3

Vacancy Defects Studied with Positron Annihilation Spectroscopy

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

  • 2456 Accesses

Abstract

Positron annihilation spectroscopy has been applied to study vacancy defects in Ga2O3. Both positron lifetime and Doppler broadening experiments have been performed, both in bulk single crystals and in thin films. The results show that Ga vacancy defects are efficiently formed in thin film growth and account for the electrical compensation in semi-insulating and highly resistive Ga2O3. Their concentrations are very low in n-type material. In (InxGa1−x)2O3 alloys, the nature and behavior of the cation vacancy defects change from Ga2O3-like to In2O3-like along with the crystalline phase. Further work is important to elucidate the details of the vacancy formation mechanisms and the origins of the exceptionally strongly anisotropic positron annihilation signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Saarinen, S. Kuisma, P. Hautojärvi, C. Corbel, C. LeBerre, Phys. Rev. B 49, 8005 (1994)

    Article  CAS  Google Scholar 

  2. K. Saarinen et al., Phys. Rev. Lett. 79, 3030 (1997)

    Article  CAS  Google Scholar 

  3. K. Saarinen, J. Nissilä, H. Kauppinen, M. Hakala, M.J. Puska, P. Hautojärvi, C. Corbel, Phys. Rev. Lett. 82, 1883 (1999)

    Article  CAS  Google Scholar 

  4. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91, 205502 (2003)

    Article  CAS  Google Scholar 

  5. J.-M. Mäki, F. Tuomisto, A. Varpula, D. Fisher, R.U.A. Khan, P.M. Martineau, Phys. Rev. Lett. 107, 217403 (2011)

    Article  Google Scholar 

  6. F. Tuomisto, V. Prozheeva, I. Makkonen, T.H. Myers, M. Bockowski, H. Teisseyre, Phys. Rev. Lett. 119, 196404 (2017)

    Article  Google Scholar 

  7. K.M. Johansen, F. Tuomisto, I. Makkonen, L. Vines, Mater. Sci. Semicond. Process. 69, 23 (2017)

    Article  CAS  Google Scholar 

  8. W.-Y. Ting, A.H. Kitai, P. Mascher, Mater. Sci. Eng. 91, 541 (2002)

    Article  Google Scholar 

  9. E. Korhonen, F. Tuomisto, D. Gogova, G. Wagner, M. Baldini, Z. Galazka, R. Schewski, M. Albrecht, Appl. Phys. Lett. 106, 242103 (2015)

    Article  Google Scholar 

  10. V. Prozheeva, R. Hölldobler, H. von Wenckstern, M. Grundmann, F. Tuomisto, J. Appl. Phys. 123, 125705 (2018)

    Article  Google Scholar 

  11. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)

    Article  CAS  Google Scholar 

  12. P. Asoka-Kumar, K.G. Lynn, D.O. Welch, J. Appl. Phys. 76, 4935 (1994)

    Article  CAS  Google Scholar 

  13. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)

    Article  CAS  Google Scholar 

  14. K. Saarinen, P. Hautojärvi, C. Corbel, Semiconductors and semimetals, in Identification of Defects in Semiconductors, vol. 51A, ed. by M. Stavola (Academic Press, New York, 1998), p. 209

    Google Scholar 

  15. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors (Springer-Verlag, Berlin, 1998)

    Google Scholar 

  16. F. Tuomisto, in Technology of Gallium Nitride Crystal Growth, ed. by D. Ehrentraut, E. Meissner, M. Bockowski (Springer, Berlin/Heidelberg, 2010)

    Google Scholar 

  17. F. Tuomisto, Semiconductors and Semimetals, in Oxide Semiconductors, vol. 88, ed. by B.G. Svensson, S.J. Pearton, C. Jagadish (Elsevier, Oxford, 2013)

    Google Scholar 

  18. F. Tuomisto, A. Karjalainen, V. Prozheeva, I. Makkonen, G. Wagner, M. Baldini, Proc. SPIE 10919, 1091910 (2019)

    Google Scholar 

  19. I. Makkonen, E. Korhonen, V. Prozheeva, F. Tuomisto, J. Phys.: Condens. Matter 28, 224002 (2016)

    Google Scholar 

  20. J. Varley, H. Peelaers, A. Janotti, C. Van de Walle, J. Phys.: Condens. Matter 23, 334212 (2011)

    CAS  Google Scholar 

  21. H. von Wenckstern, D. Splith, M. Purfürst, Z. Zhang, C. Kranert, S. Müller, M. Lorenz, M. Grundmann, Semicond. Sci. Technol. 30, 024005 (2015)

    Article  Google Scholar 

  22. C. Kranert, J. Lenzner, M. Jenderka, M. Lorenz, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, J. Appl. Phys. 116, 013505 (2014)

    Article  Google Scholar 

  23. R. Schmidt-Grund, C. Kranert, T. Böntgen, H. von Wenckstern, H. Krauß, M. Grundmann, J. Appl. Phys. 116, 053510 (2014)

    Article  Google Scholar 

  24. E. Korhonen, F. Tuomisto, O. Bierwagen, J.S. Speck, Z. Galazka, Phys. Rev. B 90, 245307 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Tuomisto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuomisto, F. (2020). Structural Properties 3. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_21

Download citation

Publish with us

Policies and ethics