Skip to main content
Log in

Magnetocaloric effect, magnetothermal and elastic properties of SmFe3 and ErFe3 compounds

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report on the temperature and field dependences of magnetization, magnetic specific heat, and magnetic entropy of the ferromagnetic \({{\text{SmFe}}}_{3}\) (\({T}_{C}\) ≈ 655 K) and ferrimagnetic \({{\text{ErFe}}}_{3}\) (\({T}_{C}\) ≈ 600 K, compensation temperature ≈ 230 K) compounds using the mean-field theory (MFT). The magnetocaloric effect (MCE), namely, the isothermal change in entropy (∆Sm) and the adiabatic change in temperature (∆Tad), is determined using the well-known Maxwell relation. Density Functional Theory (DFT), as implemented in the WIEN2k electronic code, is used to perform the ab-initio calculation of the elastic constants, bulk and shear moduli, and density-of-states. Using the electronic coefficient of specific heat (\({\upgamma }_{{\text{e}}}\)) and the Debye temperature (\({\uptheta }_{{\text{D}}}\)), the electronic and lattice contributions to the total specific heat and total entropy are computed, respectively. The ferrimagnetic \({{\text{ErFe}}}_{3}\) exhibits both direct and inverse MCE, while \({{\text{SmFe}}}_{3}\) exhibits only direct MCE effects. For \({{\text{SmFe}}}_{3}\), the maximum \(\Delta {{\text{S}}}_{{\text{m}}}\) for a 7T field change is approximately 1.29 J/mol K. For the same field change, the maximum direct and inverse |\(\Delta {{\text{S}}}_{{\text{m}}}\)| for \({{\text{ErFe}}}_{3}\) are approximately 0.69 and 0.74 J/mol K, respectively. At their respective Curie temperatures, SmFe3 and ErFe3 exhibit adiabatic temperature changes of about 8 and 5 K, respectively, for a 7 T field change. The Arrott plots and universal curves, along with specific aspects of the thermomagnetic and magnetocaloric properties, are used to examine the order of the magnetic phase transition in these two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available on reasonable request for academic use and within the limitations of the provided informed consent by the corresponding author upon acceptance.

References

  1. M Földeàki, R Chahine and T K Bose Journal of Applied Physics 77 3528 (1995). https://doi.org/10.1063/1.358648

    Article  ADS  Google Scholar 

  2. K P Shinde et al Scientific Reports 11 20206 (2021). https://doi.org/10.1038/s41598-021-99755-2

    Article  ADS  MathSciNet  Google Scholar 

  3. N A de Oliveira, P J von Ranke Physics Reports 489 89 (2010). https://doi.org/10.1016/j.physrep.2009.12.006

  4. M K Sharma, G Kaur and K Mukherjee Journal of Alloys and Compounds 782 10 (2019). https://doi.org/10.1016/j.jallcom.2018.12.161

    Article  Google Scholar 

  5. A Nagy Journal of Magnetism and Magnetic Materials 473 324 (2019). https://doi.org/10.1016/j.jmmm.2018.10.050

    Article  ADS  Google Scholar 

  6. M S M Abu-Elmagd et al Scientific Reports 13 2876 (2023). https://doi.org/10.1038/s41598-023-29676-9

    Article  ADS  Google Scholar 

  7. R M Elkhneny, S H Aly, S Yehia and D M Khedr Cryogenics 127 103567 (2022). https://doi.org/10.1016/j.cryogenics.2022.103567

    Article  Google Scholar 

  8. M M Elkenany, S H Aly and S Yehia Cryogenics 123 103439 (2022). https://doi.org/10.1016/j.cryogenics.2022.103439

    Article  Google Scholar 

  9. R Abu Elnasr, S H. Aly, S Yehia and F Z Mohammad Journal of Superconductivity and Novel Magnetism 36 931 (2023). https://doi.org/10.1007/s10948-023-06529-0

    Article  Google Scholar 

  10. A Jabar, L Bahmad and A Benyoussef Indian Journal of Physics 98 169 (2023). https://doi.org/10.1007/s12648-023-02798-6

    Article  ADS  Google Scholar 

  11. K Khallouq et al Indian Journal of Physics 97 3515 (2023). https://doi.org/10.1007/s12648-023-02693-0

    Article  ADS  Google Scholar 

  12. Q Wang et al Ceramics International 49 11903 (2023). https://doi.org/10.1016/j.ceramint.2022.12.038

    Article  Google Scholar 

  13. H Jebari et al Computational and Theoretical Chemistry 1220 113993 (2023). https://doi.org/10.1016/j.comptc.2022.113993

    Article  Google Scholar 

  14. A E Clark Handbook of Ferromagnetic Materials 1 531 (1980). https://doi.org/10.1016/S1574-9304(05)80122-1

    Article  Google Scholar 

  15. R S Craig, W E Wallace, H K Smith Science and Technology of Rare Earth Materials 353 (1980). https://doi.org/10.1016/B978-0-12-675640-1.50021-0

  16. T Saito, T Horita and D Nishio-Hamane Materials Transactions 60 1384 (2019). https://doi.org/10.2320/matertrans.M2018317

    Article  Google Scholar 

  17. L Yang et al Journal of Rare Earths 32 960 (2014). https://doi.org/10.1016/S1002-0721(14)60169-1

    Article  Google Scholar 

  18. J P Liu, F R de Boer and K H Buschow Journal of Magnetism and Magnetic Materials 98 291 (1991). https://doi.org/10.1016/0304-8853(91)90244-5

    Article  ADS  Google Scholar 

  19. R Abbundi, A E Clark, H T Savage and O D McMasters Journal of Magnetism and Magnetic Materials 15–18 595 (1980). https://doi.org/10.1016/0304-8853(80)90678-2

    Article  ADS  Google Scholar 

  20. M Sorescu, L Diamandescu and M Valeanu Intermetallics 14 332 (2006). https://doi.org/10.1016/j.intermet.2005.06.010

    Article  Google Scholar 

  21. S M Bhagat, J N Lloyd and D K Paul Journal of Magnetism and Magnetic Materials 1065 (1979). https://doi.org/10.1016/0304-8853(79)90317-2

    Article  ADS  Google Scholar 

  22. J N Lloyd, S M Bhagat, A R Knudson and C R Gossett Journal of Applied Physics 50 1614 (1979). https://doi.org/10.1063/1.327267

    Article  ADS  Google Scholar 

  23. F Yang, W Liu and Z D Zhang Materials Letters 69 52 (2012). https://doi.org/10.1016/j.matlet.2011.11.072

    Article  Google Scholar 

  24. T T Trinh, J Kim, R Sato, K Matsumoto and T Teranishi Science and Technology of Advanced Materials 22 37 (2021). https://doi.org/10.1080/14686996.2020.1862630

    Article  ADS  Google Scholar 

  25. Van der Kraan et al Physica Status Solidi (a) 35 137 (1976). https://doi.org/10.1002/pssa.2210350116

    Article  ADS  Google Scholar 

  26. G J Bowden and R K Day Journal of Physics F: Metal Physics 7181 (1977). https://doi.org/10.1088/0305-4608/7/1/027

    Article  ADS  Google Scholar 

  27. R L Davis, R K Day and J B Dunlop Journal of Physics F: Metal Physics 7 1885 (1977). https://doi.org/10.1088/0305-4608/7/9/031

    Article  ADS  Google Scholar 

  28. J Azoulay and L Ley Solid State Communications 31 131 (1979). https://doi.org/10.1016/0038-1098(79)90420-4

    Article  ADS  Google Scholar 

  29. J F Herbst and J J Croat Journal of applied physics 55 3023 (1984). https://doi.org/10.1063/1.333293

    Article  ADS  Google Scholar 

  30. X Xu and S A Shaheen Journal of Applied Physics 76 6754 (1994). https://doi.org/10.1063/1.358152

    Article  ADS  Google Scholar 

  31. M Shafiq, I Ahmad and S Jalali Asadabadi Journal of Applied Physics 116 103905 (2014). https://doi.org/10.1063/1.4894833

    Article  ADS  Google Scholar 

  32. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka, J Luitz Vienna University of Technology (2001). http://www.wien2k.at/

  33. C Kittel Elementary Statistical Physics (New York: Courier Corporation) (2004)

    Google Scholar 

  34. P Debye Annalen der Physik 344 789 (1912).

    Article  ADS  Google Scholar 

  35. C K P McEuen Introduction to Solid State Physics, vol 8 (New York: Wiley) (1996)

    Google Scholar 

  36. O K Andersen Physical Review B 12 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

    Article  ADS  Google Scholar 

  37. R Stadler et al Physical Review B 54 1729 (1996). https://doi.org/10.1103/PhysRevB.54.1729

    Article  ADS  Google Scholar 

  38. S C Wu, S S Naghavi, G H Fecher and C Felser Journal of Modern Physics 9 775 (2018). https://doi.org/10.4236/jmp.2018.94050

    Article  ADS  Google Scholar 

  39. A Reuss and Z Angew Z angew Math. Mech 9 49 (1929).

    Article  Google Scholar 

  40. R Hill Proceedings of the Physical Society Section A 65 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  41. R Hill J. Mech. Phys. Solids 11 357 (1963). https://doi.org/10.1016/0022-5096(63)90036-X

    Article  ADS  Google Scholar 

  42. M Jamal, M Bilal, I Ahmad and S Jalali-Asadabadi Journal of Alloys and Compounds 735 569 (2018). https://doi.org/10.1016/j.jallcom.2017.10.139

    Article  Google Scholar 

  43. M Jamal IRelast (2019). http://www.wien2k.at/

  44. M Jamal, N K Sarvestani, A Yazdani and A H Reshak RSC Advances 4 57903 (2014). https://doi.org/10.1039/C4RA09358E

    Article  ADS  Google Scholar 

  45. L Fast, J M Wills, B Johansson and O Eriksson Physical Review B 51 17431 (1995). https://doi.org/10.1103/PhysRevB.51.17431

    Article  ADS  Google Scholar 

  46. O L Anderson Journal of Physics and Chemistry of Solids 24 909 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

    Article  ADS  Google Scholar 

  47. A Smith et al Advanced Energy Materials 2 1288 (2012). https://doi.org/10.1002/aenm.201200167

    Article  Google Scholar 

  48. J F Herbst and J J Croat Journal of Applied Physics 53 4304 (1982). https://doi.org/10.1063/1.331207

    Article  ADS  Google Scholar 

  49. P J Von Ranke, B P Alho, E P Nobrega and N A de Oliveira Physica B: Condensed Matter 404 3045 (2009). https://doi.org/10.1016/j.physb.2009.07.009

    Article  ADS  Google Scholar 

  50. J Lyubina Journal of Physics D: Applied Physics 50 053002 (2017). https://doi.org/10.1088/1361-6463/50/5/053002

    Article  ADS  Google Scholar 

  51. Kristin A Persson, https://next-gen.materialsproject.org/

  52. M De Jong et al Scientific Reports 6 1 (2016). https://doi.org/10.1038/srep34256

    Article  Google Scholar 

  53. M De Jong et al Scientific Data 2 1 (2015). https://doi.org/10.1038/sdata.2015.9

    Article  Google Scholar 

  54. A H Reshak and M Jamal Journal of Alloys and Compounds 543 147 (2012). https://doi.org/10.1016/j.jallcom.2012.07.107

    Article  Google Scholar 

  55. J Y Law et al Nature Communications 9 1 (2018). https://doi.org/10.1038/s41467-018-05111-w

    Article  ADS  Google Scholar 

  56. T A Ho, S H Lim, T L Phan and S C Yu Journal of Alloys and Compounds 692 687 (2017). https://doi.org/10.1016/j.jallcom.2016.09.097

    Article  Google Scholar 

  57. J C Debnath and J Wang Intermetallics 78 50 (2016). https://doi.org/10.1016/j.intermet.2016.09.002

    Article  Google Scholar 

  58. C M Bonilla et al Physical Review B 81 224424 (2010). https://doi.org/10.1103/PhysRevB.81.224424

    Article  ADS  Google Scholar 

  59. V K Pecharsky and K A Gschneidner Journal of Magnetism and Magnetic Materials 200 44 (1994). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  ADS  Google Scholar 

  60. A M Tishin, K A Gschneidner and V K Pecharsky Phys. Rev. B 59 503 (1999). https://doi.org/10.1103/PhysRevB.59.503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatema Z. Mohammad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest with any party.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, F.Z., Abdel-Kader, A., Hammad, T. et al. Magnetocaloric effect, magnetothermal and elastic properties of SmFe3 and ErFe3 compounds. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03216-1

Keywords

Navigation