Skip to main content
Log in

Optimization of hydrophobic anti-reflection calcium fluoride films for ZnO/GaAs heterojunction solar cell: a simulation study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, calcium fluoride (CaF2) has been employed as an anti-reflection coating (ARC) for gallium arsenide (GaAs) based heterojunction solar cell. A numerical analysis was carried out to optimize performance parameters such as doping concentration, thickness of absorber and window layer, and carrier lifetime. ZnO and GaAs have been employed as window and absorber layer, respectively. Performance of CaF2 ARC has been investigated at optimum conditions. Personal computer one-dimensional simulator has been used for numerical analysis. Different Materials like magnesium oxide, magnesium fluoride (MgF2), titanium nitrate, aluminum trioxide and silicon dioxide, have been considered to make a comparative analysis. Best power conversion efficiency of 27.4% has been achieved with 32.0 mA short circuit current, 0.9899 V of open circuit voltage, and 86.49% of fill factor at optimum thicknesses of ARC, absorber, and window layers. Results revealed that MgF2 and CaF2 show almost same results as ARC layer but when it comes to stability CaF2 is more appropriate material as ARC layer for ZnO/GaAS solar cell. The results prove that optimization of thickness of materials, doping concentration, and carrier lifetime of absorber and window layer would make the crucial factor to fabricate the cost efficient and highly efficient GaAs solar cell based on CaF2 ARC layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Taylor P International Energy Agency. (2010)

  2. N S Lewis, G Crabtree, A Nozik, M Wasielewski, P Alivisatos, H Kung et al. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, 18–21, (2005). DOESC (USDOE Office of Science (SC))

  3. D K Shah, K Devendra, D Parajuli, M S Akhtar, C Y Kim and O-B Yang Solar energy 234 330 (2022)

    Article  ADS  Google Scholar 

  4. T B McKee Water 26 1 (1993)

    Google Scholar 

  5. D K Shah Chemical physics letters 754 137756 (2020)

    Article  Google Scholar 

  6. G D Barber et al The journal of physical chemistry letters 2 581 (2011)

    Article  Google Scholar 

  7. J Fang, H Wu, T Liu, Z Zheng, J Lei, Q Liu et al Applied Energy 279 115778 (2020)

    Article  Google Scholar 

  8. H Li, Y Hu, H Wang, Q Tao, Y Zhu and Y Yang Solar RRL 5 3 2000524 (2021)

    Article  Google Scholar 

  9. M Alaaeddin, S Sapuan, M Zuhri, E Zainudin and F M Al-Oqla Renewable and Sustainable Energy Reviews 102 318 (2019)

    Article  Google Scholar 

  10. Q Ni Journal of Quantitative Spectroscopy and Radiative Transfer 268 107625 (2021)

    Article  Google Scholar 

  11. K Islam, A Nayfeh Simulation of a-Si/c-GaAs/c-Si heterojunction solar cells. In: 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation. (2012). IEEE

  12. B M Kayes et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: 2011 37th IEEE Photovoltaic Specialists Conference. (2011). IEEE

  13. S B Khan, S Irfan, Z Zhuanghao and S L Lee Materials 12 1483 (2019)

    Article  ADS  Google Scholar 

  14. M-C Tseng IEEE Electron Device Letters 30 940 (2009)

    Article  ADS  Google Scholar 

  15. Z Dai, S Chegwidden, L Rumaner and F Ohuchi Journal of Applied Physics 85 2603 (1999)

    Article  ADS  Google Scholar 

  16. K Devendra Am. J. Eng. Res 9 218 (2020)

    Google Scholar 

  17. G Jarosz Materials Science in Semiconductor Processing 107 104812 (2020)

    Article  Google Scholar 

  18. L M Herz ACS Energy Letters 2 1539 (2017)

    Article  Google Scholar 

  19. M Sotoodeh Journal of Applied Physics 87 2890 (2000)

    Article  ADS  Google Scholar 

  20. A D Khan, A D Khan Applied Physics A 124(12) 851 (2018)

    Article  Google Scholar 

  21. Y Kuang, Y Liu, Y Ma, J Xu, X Yang, X Hong et al Advances in Condensed Matter Physics (2015). https://doi.org/10.1155/2015/326384

    Article  Google Scholar 

  22. E T Mohamed, A O Maka, M Mehmood, A M Direedar and N Amin Sustainable Energy Technologies and Assessments 44 101067 (2021)

    Article  Google Scholar 

  23. N Gruginskie et al Solar Energy Materials and Solar Cells 223 110971 (2021)

    Article  Google Scholar 

  24. V Ranjan, C S Solanki, R Lal. Minority carrier lifetime, measurement of solar cell. In: 2008 2nd National Workshop on Advanced Optoelectronic Materials and Devices. (2008). IEEE

  25. Z Ali, K Ali, B Hussain, S Maqsood and I Iqbal Optical Materials 128 112358 (2022)

    Article  Google Scholar 

  26. D K Shah, S Y Han, S M Akhtar, O Yang and C Y Kim Nanoscience and Nanotechnology Letters 11 159 (2019)

    Article  Google Scholar 

  27. V A Coleman, C Jagadish, Basic properties and applications of ZnO, in Zinc oxide bulk, thin films and nanostructures. 2006, Elsevier. p. 1-20

  28. Y Liu, Y Li, Y Wu, G Yang, L Mazzarella, P Procel-Moya et al Materials Science and Engineering: R: Reports 142 100579 (2020)

    Article  Google Scholar 

  29. H Naim, D K Shah, A Bouadi, M R Siddiqui, M S Akhtar and C Y Kim Journal of Electronic Materials 51 586 (2022)

    Article  ADS  Google Scholar 

  30. B Hussain, M Y A Raja, N Lu, I Ferguson. Applications and synthesis of zinc oxide: an emerging wide bandgap material. In: 2013 High Capacity Optical Networks and Emerging/Enabling Technologies. (2013). IEEE

  31. D K Shah, K Devendra, M Muddassir, M S Akhtar, C Y Kim and O-B Yang Solar energy 216 259 (2021)

    Article  ADS  Google Scholar 

  32. D K Shah, D KC, M S Akhtar, C Y Kim and O-B Yang Applied Sciences 10 6062 (2020)

    Article  Google Scholar 

  33. D K Shah, J Choi, D KC, M S Akhtar, C Y Kim and O-B Yang Journal of Materials Science: Materials in Electronics 32 2784 (2021)

    Google Scholar 

  34. K Islam, A Alnuaimi, H Ally, A Nayfeh. ITO, Si3N4 and ZnO: Al-Simulation of Different Anti-reflection Coatings (ARC) for Thin Film a-Si: H Solar Cells. In: 2013 European Modelling Symposium. (2013). IEEE

  35. D K Shah Optical Materials 121 111500 (2021)

    Article  Google Scholar 

  36. D Hocine, M Belkaid, M Pasquinelli, L Escoubas, J Simon, G Rivière et al Materials Science in Semiconductor Processing 16 113 (2013)

    Article  Google Scholar 

  37. D K Shah et al Materials Science in Semiconductor Processing 147 106695 (2022)

    Article  Google Scholar 

  38. L Dobrzański, M Szindler, A Drygała and M Szindler Open Physics 12 666 (2014)

    Article  ADS  Google Scholar 

  39. R Sharma, G Amit, V Ajit. (2017).

  40. A Sultanov Materials Today: Proceedings 49 2511 (2022)

    Google Scholar 

  41. Periyasamy B D D S.

  42. P Ilenikhena Physics 11 415 (2007)

    Google Scholar 

  43. N Venugopal, V Gerasimov, A Ershov, S Karpov and S Polyutov Optical Materials 72 397 (2017)

    Article  ADS  Google Scholar 

  44. M Chinnasamy, R Rathanasamy, S Sivaraj, G Velu Kaliyannan, M S Anbupalani and S K Jaganathan Journal of Electronic Materials 51 2833 (2022)

    Article  ADS  Google Scholar 

  45. Robin R Phillips, Vic Haynes, David A Naylor and Peter Ade Applied Optics 47 870 (2008). https://doi.org/10.1364/AO.47.000870

    Article  ADS  Google Scholar 

  46. Mushtak Abdulmohsen Jabbar and Tariq J Alwan Iraqi Journal of Science (2020). https://doi.org/10.24996/ijs.2020.61.11.13

    Article  Google Scholar 

  47. N M Saeed and A Suhail Iraqi journal of science 53 88 (2012)

    Google Scholar 

  48. Faiazul Haque, Kazi Sajedur Rahman, Mohammad Aminul Islam, Yulisa Yusoff, Naveed Aziz Khan, Ammar Ahmed Nasser and Nowshad Amin Optical and Quantum Electronics (2019). https://doi.org/10.1007/s11082-019-1994-6

    Article  Google Scholar 

  49. Feng Zhan, Ji-Fang He, Xiang-Jun Shang, Mi-Feng Li, Hai-Qiao Ni, Xu Ying-Qiang and Zhi-Chuan Niu Chinese Physics B 21 037802 (2012). https://doi.org/10.1088/1674-1056/21/3/037802

    Article  ADS  Google Scholar 

  50. M Fedawy, S M Ali and T Abdolkader Journal of Advanced Research in Materials Science 42 1 (2018)

    Google Scholar 

  51. Y-Y Quan and L-Z Zhang Solar Energy Materials and Solar Cells 160 382 (2017)

    Article  Google Scholar 

  52. Xiaoyu Sun, Lei Li, Xu Xiaozhuang, Guanyu Song, Tu Jielei, Pingyuan Yan, Weinan Zhang and Hu Kai Optik 212 164704 (2020). https://doi.org/10.1016/j.ijleo.2020.164704

    Article  ADS  Google Scholar 

  53. M A Contreras, B Egaas, K Ramanathan, J Hiltner, A Swartzlander, F Hasoon et al Progress in Photovoltaics: Research and applications 7 311 (1999)

    Article  Google Scholar 

  54. A Alemu, A Freundlich, N Badi, C Boney and A Bensaoula Solar Energy Materials and Solar Cells 94 921 (2010)

    Article  Google Scholar 

  55. A S Sarkın Solar energy 199 63 (2020)

    Article  ADS  Google Scholar 

  56. Ke Ding, Xiujuan Zhang, Ling Ning, Zhibin Shao, Peng Xiao, Anita Ho-Baillie, Xiaohong Zhang and Jiansheng Jie Nano Energy 46 257 (2018). https://doi.org/10.1016/j.nanoen.2018.02.005

    Article  Google Scholar 

  57. Fu Wei Li, Ting Shu Lv, Xinyu Tan, Lihua Jiang, Ting Xiao and Peng Xiang Materials Letters 243 108 (2019). https://doi.org/10.1016/j.matlet.2019.01.158

    Article  Google Scholar 

  58. N Rezaei, O Isabella, Z Vroon and M Zeman Solar energy 177 59 (2019)

    Article  ADS  Google Scholar 

  59. N H Kumar, D Ravinder, T A Babu, N Venkatesh, S Swathi and N K Prasad Journal of the Indian Chemical Society 99 100362 (2022)

    Article  Google Scholar 

  60. N H Kumar, A Edukondalu and D Ravinder Journal of the Australian Ceramic Society 11 1 (2023)

    Google Scholar 

  61. J Doualan, P Camy, R Moncorgé, E Daran, M Couchaud and B Ferrand Journal of Fluorine Chemistry 128 459 (2007)

    Article  Google Scholar 

  62. A De Bonis, A Santagata, A Galasso, M Sansone and R Teghil Applied surface science 302 145 (2014)

    Article  ADS  Google Scholar 

  63. H Wang, R Liu, K Chen, X Shi and Z Xu Thin Solid Films 519 6438 (2011)

    Article  ADS  Google Scholar 

  64. J Mashaiekhy, Z Shafieizadeh, H Nahidi and I Hadi Optik 124 3957 (2013)

    Article  ADS  Google Scholar 

  65. I Snetkov Optical Materials 69 291 (2017)

    Article  ADS  Google Scholar 

  66. L Yan, F Qin Dong, S Zhao, H Yan, H Lv and X Yuan Materials Letters 129 158 (2014)

    Article  Google Scholar 

  67. R Yadav, A Mittal, S Dwivedi and A Pandey Surface and interface analysis 45 1775 (2013)

    Article  Google Scholar 

  68. J Sun, Y Zhang, Y Zheng, Z Xu and R Liu Thin Solid Films 562 478 (2014)

    Article  ADS  Google Scholar 

  69. Xixi Liu, Hu Xiaoyun, Hui Miao, Guowei Zhang, Mu Jianglong, Tongxin Han and Dekai Zhang Solar Energy 134 45 (2016). https://doi.org/10.1016/j.solener.2016.04.047

    Article  ADS  Google Scholar 

  70. V Ludhiya Inorganic Chemistry Communications 150 110558 (2023)

    Article  Google Scholar 

  71. E Sumalatha Inorganic Chemistry Communications 146 110200 (2022)

    Article  Google Scholar 

  72. M-C Liu, C-C Lee, M Kaneko, K Nakahira and Y Takano Applied Optics 45 1368 (2006)

    Article  ADS  Google Scholar 

  73. R Thielsch, M Pommies, J Heber, N Kaiser, J Ullmann. Structural and mechanical properties of evaporated pure and mixed MgF2-BaF2 thin films. In: Advances in Optical Interference Coatings. (1999). SPIE

  74. N Emre Çetin, Şadan Korkmaz, Saliha Elmas, Naci Ekem, M Suat Pat, Zafer Balbağ, Enver Tarhan, Sinan Temel and Murat Özmumcu Materials Letters 91 175 (2013). https://doi.org/10.1016/j.matlet.2012.07.086

    Article  Google Scholar 

  75. Chao Wen and Mario Lanza Applied Physics Reviews (2021). https://doi.org/10.1063/5.0036987

    Article  Google Scholar 

  76. A Rehmer Journal of Materials Chemistry C 3 1716 (2015)

    Article  Google Scholar 

  77. C A Lucas and D Loretto Applied Physics Letters 60 2071 (1992). https://doi.org/10.1063/1.107092

    Article  ADS  Google Scholar 

  78. S Sinharoy Thin Solid Films 187 231 (1990)

    Article  ADS  Google Scholar 

  79. Yijia Huang, Pu Mingbo, Zeyu Zhao, Xiong Li, Xiaoliang Ma and Xiangang Luo Optics Communications 407 204 (2018). https://doi.org/10.1016/j.optcom.2017.09.036

    Article  ADS  Google Scholar 

  80. R Reeves Journal of Luminescence 129 1673 (2009)

    Article  ADS  Google Scholar 

  81. R K Jain, J Kaur, A Khanna and A K Chawla Journal of Materials Science: Materials in Electronics 31 14241 (2020)

    Google Scholar 

  82. Masahiko Daimon and Akira Masumura Applied Optics 41 5275 (2002). https://doi.org/10.1364/AO.41.005275

    Article  ADS  Google Scholar 

  83. K C Devendra, Deb Kumar Shah, M Shaheer Akhtar, Mira Park, Chong Yeal Kim and O-B Yang, Molecules 26 3275 (2021). https://doi.org/10.3390/molecules26113275

    Article  Google Scholar 

  84. M Labed, N Sengouga, A Meftah, A Meftah and Y S Rim Optical Materials 120 111453 (2021)

    Article  Google Scholar 

  85. K Dasgupta, A Mondal, S Ray, U Gangopadhyay, Silicon: p. 1, (2021)

  86. B Hussain Solar Energy Materials and Solar Cells 139 95 (2015)

    Article  Google Scholar 

  87. J Bernede Journal of the Chilean Chemical Society 53 1549 (2008)

    Article  Google Scholar 

  88. C F Kamdem, A T Ngoupo, F K Konan, H J T Nkuissi, B Hartiti and J-M Ndjaka Indian Journal of Science and Technology 12 37 (2019)

    Article  Google Scholar 

  89. M A N D O N G Al-montazer and Ü Z Ü M Abdullah Sakarya University Journal of Science 23 1190 (2019). https://doi.org/10.16984/saufenbilder.557490

    Article  Google Scholar 

  90. Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Jaideep Chandran, Alex Stojcevski, Maruthamuthu Subramanian, S Raj Marnadu, Mohd Alfaify and Shkir Energies 14 4986 (2021). https://doi.org/10.3390/en14164986

    Article  Google Scholar 

  91. A J Thosar Journal of Science and Technology 7 637 (2014)

    Google Scholar 

  92. Jaker Hossain Journal of Physics Communications 5 085008 (2021). https://doi.org/10.1088/2399-6528/ac1bc0

    Article  ADS  Google Scholar 

  93. M Basher Optik 176 93 (2019)

    Article  ADS  Google Scholar 

  94. K Devendra Materials Today: Proceedings 49 2580 (2022)

    Google Scholar 

  95. Samer H Zyoud, Ahed H Zyoud, Naser M Ahmed, Anupama R Prasad, Sohaib Naseem Khan, Atef F. I Abdelkader and Moyad Shahwan Crystals 11 1468 (2021). https://doi.org/10.3390/cryst11121468

    Article  Google Scholar 

  96. S Asahi, H Teranishi, K Kusaki, T Kaizu and T Kita Nature communications 8 1 (2017)

    Article  Google Scholar 

  97. Neha Thakur and Rajesh Mehra Journal of Nanoelectronics and Optoelectronics 14 217 (2019). https://doi.org/10.1166/jno.2019.2476

    Article  Google Scholar 

  98. H Jee, J Song, D Moon, J Lee and C Jeong Journal of Nanoscience and Nanotechnology 20 7096 (2020)

    Article  Google Scholar 

  99. L Kosyachenko Materials for Renewable and Sustainable Energy 2 1 (2013)

    Article  Google Scholar 

  100. Natarajan Shanmugam, Rishi Pugazhendhi, Rajvikram Madurai Elavarasan, Pitchandi Kasiviswanathan and Narottam Das Energies 13 2631 (2020). https://doi.org/10.3390/en13102631

    Article  Google Scholar 

  101. B Kumaragurubaran, S Anandhi. Reduction of reflection losses in solar cell using anti reflective coating. In: 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). (2014). IEEE

  102. Markvart T and L Castañer, Principles of solar cell operation, In: McEvoy's Handbook of Photovoltaics, Elsevier. p. 3-28, (2018)

  103. C Ma, L Wang, X Fan and J Liu Applied Surface Science 560 149924 (2021)

    Article  Google Scholar 

  104. M A Zahid, M Q Khokhar, Y Kim and J Yi Crystal Research and Technology 57 2100233 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Higher Education Commission (HEC) of Pakistan [Grant No: 8615/Punjab/NRPU/R&D/HEC/2017] to Dr. Khuram Ali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, S., Ishaq, M., Ali, Z. et al. Optimization of hydrophobic anti-reflection calcium fluoride films for ZnO/GaAs heterojunction solar cell: a simulation study. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03214-3

Keywords

Navigation