Skip to main content
Log in

Optimization of highly efficient GaAs–silicon hybrid solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optimizing the physical and chemical properties of each material in the solar cell is an efficient way to improve their performance. In the present work, we propose a double layer absorber made of high and low bandgap materials such as gallium arsenide (GaAs) and silicon (Si) along with the window layer made of zinc oxide (ZnO) and buffer layer made of cadmium sulfide (CdS) material. The solar cell structure is numerically optimized for several parameters like thickness of different layers, doping concentration, and operating temperature. Results showed that the open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (ƞ) are greatly improved against respective changes in the performance parameters. Eventually, a comparison has been made with previously reported solar cells, which proves that our suggested model exhibit high values of Voc = 0.776 V, Jsc = 38.46 mA/cm2, FF = 85.49%, and ƞ = 25.53%, respectively, with almost flat and near unity response for quantum efficiency. This indicates that the proposed design shows promise as a feasible choice for replacing less efficient conventional solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Yoshikawa et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2(5), 17032 (2017)

    Article  ADS  Google Scholar 

  2. S. Zhu et al., Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy 45, 280–286 (2018)

    Article  Google Scholar 

  3. J. Werner et al., Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2. J. Phys. Chem. Lett. 7(1), 161–166 (2015)

    Article  Google Scholar 

  4. Y. Jiang et al., High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure. Sol. Energy 142, 91–96 (2017)

    Article  ADS  Google Scholar 

  5. C.D. Bailie et al., Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8(3), 956–963 (2015)

    Article  Google Scholar 

  6. C.-H. Chiang, C.-G. Wu, Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 10(3), 196 (2016)

    Article  ADS  Google Scholar 

  7. N. Gasparini et al., Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1(9), 16118 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.T. Trinh et al., Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Sol. Energy Mater. Sol. Cells 174, 187–195 (2018)

    Article  Google Scholar 

  9. K.A. Bush et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017)

    Article  ADS  Google Scholar 

  10. N. Chuchvaga et al., Study and optimization of heterojunction silicon solar cells. J. Phys. Conf. Ser. 993(1), 012039 (2018)

    Article  Google Scholar 

  11. G. Kaur, A. Mitra, K. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Natural Sci. Mater. Int. 25(1), 12–21 (2015)

    Article  Google Scholar 

  12. B. von Roedern, How do buffer layers affect solar cell performance and solar cell stability? MRS Online Proc Library Arch 668 (2001)

  13. C. Schwartz et al., Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray absorption spectroscopy: Experiment and theory. Sol. Energy Mater. Sol. Cells 149, 275–283 (2016)

    Article  Google Scholar 

  14. K. Bertness et al., 29.5%-efficient GaInP/GaAs tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)

    Article  ADS  Google Scholar 

  15. K. Chopra, P. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2-3), 69–92 (2004)

    Article  Google Scholar 

  16. H. Heriche, Z. Rouabah, N. Bouarissa, High-efficiency CIGS solar cells with optimization of layers thickness and doping. Optik-Int. J. Light Electron Opt. 127(24), 11751–11757 (2016)

    Article  Google Scholar 

  17. H. Heriche, Z. Rouabah, N. Bouarissa, New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 42(15), 9524–9532 (2017)

    Article  Google Scholar 

  18. M.S. Shur, Handbook series on semiconductor parameters. Vol. 1. 1996: World Scientific

  19. E.H. Nicollian, J.R. Brews, E.H. Nicollian, MOS (metal oxide semiconductor) physics and technology (1982: Wiley, New York et al, 1987)

    Google Scholar 

  20. Y. Liu, Y. Sun, A. Rockett, A new simulation software of solar cells—wxAMPS. Sol. Energy Mater. Sol. Cells 98, 124–128 (2012)

    Article  Google Scholar 

  21. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  ADS  Google Scholar 

  22. J. Pala et al., Analysis and design optimization of organic dye sensitized solar cell based on simulation. AIP Conf. Proc. 1837(1):030004 (2017)

    Article  MathSciNet  Google Scholar 

  23. R. Stangl, C. Leendertz, J. Haschke, Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. In: Solar Energy. 2010, InTech

  24. S. Degrave, M. Burgelman, P. Nollet. Modelling of polycrystalline thin film solar cells: new features in scaps version 2.3. In: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. 2003 1, 487–490 (2003) IEEE

  25. H. Movla, Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis. Optik-Int. J. Light Electron Opt. 125(1), 67–70 (2014)

    Article  Google Scholar 

  26. M. Burgelman et al., Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12(2-3), 143–153 (2004)

    Article  Google Scholar 

  27. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013)

    Article  ADS  Google Scholar 

  28. P. Chelvanathan, M.I. Hossain, N. Amin, Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)

    Article  ADS  Google Scholar 

  29. A.D. Khan, J. Iqbal, S. ur Rehman, Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Appl. Phys. A 124(9), 610 (2018)

    Article  ADS  Google Scholar 

  30. A.D. Khan et al., Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt. Mater. 84, 195–198 (2018)

    Article  ADS  Google Scholar 

  31. M. Penny, T. Farrell, G. Will, A mathematical model for the anodic half cell of a dye-sensitised solar cell. Sol. Energy Mater. Sol. Cells 92(1), 24–37 (2008)

    Article  Google Scholar 

  32. X. Miao et al., High efficiency graphene solar cells by chemical doping. Nano Lett. 12(6), 2745–2750 (2012)

    Article  ADS  Google Scholar 

  33. T. Nakada, M. Mizutani, 18% efficiency Cd-free Cu (In, Ga) Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41(2B), L165 (2002)

    Article  ADS  Google Scholar 

  34. C.S. Solanki, Solar photovoltaics: fundamentals, technologies and applications. PHI Learning Pvt. Ltd (2015)

  35. D. Braunger et al., An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Sol. Energy Mater. Sol. Cells 40(2), 97–102 (1996)

    Article  Google Scholar 

  36. N. Amin et al., Numerical modelling of ultra thin Cu (In, Ga) Se2 solar cells. Energy Proc. 15, 291–298 (2012)

    Article  Google Scholar 

  37. S. Komilian, O. Oklobia, T. Sadat-Shafai, Controlling intercalations of PBDTTT-EFT side chain to initiate suitable network for charge extraction in PBDTTT-EFT: pc 71 BM blended bulk heterojunction solar cell. Sol. Energy Mater. Sol. Cells 175, 35–40 (2018)

    Article  Google Scholar 

  38. K. Qiu et al., Power-loss analysis of a dopant-free ZnS/p-Si heterojunction solar cell with WO 3 as hole-selective contact. Sol. Energy 165, 35–42 (2018)

    Article  ADS  Google Scholar 

  39. Y. Takano, K. Oyaizu, Fabrication of SnS-MgSnO heterojunction solar cells using vacuum thermal evaporation and sol-gel method. Materials Letters, 2018

  40. J. Zheng et al., 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm2. ACS Energy Letters 3(9), 2299–2300 (2018)

    Article  Google Scholar 

  41. J.-H. Wi et al., Spectral response of CuGaSe 2/Cu (In, Ga) Se 2 Monolithic tandem solar cell with open-circuit voltage over 1 V. IEEE J. Photovolt. 8(3), 840–848 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Daud Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.D., Khan, A.D. Optimization of highly efficient GaAs–silicon hybrid solar cell. Appl. Phys. A 124, 851 (2018). https://doi.org/10.1007/s00339-018-2279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2279-9

Navigation