Skip to main content
Log in

Solution combustion synthesis of zinc and calcium aluminate spinel phase materials: optical and structural properties

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this experimental study, zinc aluminate and calcium aluminate spinel nano-powders were synthesized using the solution combustion method. Subsequently, we explored the impact of metal cation substitution (Zn+2 and Ca+2) on the optical and structural properties of these samples through ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD). Crystalline forms of ZnAl2O4 and CoAl2O4 were obtained after calcination at 900 °C for 4 h under atmospheric air conditions. The UV–visible spectroscopy results revealed optical bandgap values of 3.771 and 3.507 eV for ZnAl2O4 and CaAl2O4 respectively. The FT-IR spectra demonstrated the presence of intense fundamental absorption peaks in the wavenumbers range 400–745 cm−1, confirming the formation of metal aluminate spinel structure. The X-ray diffraction analysis confirmed the spinel structure of the prepared samples. Furthermore, the XRD results revealed that the variation of the M element in the structure led to change in the lattice type and the crystallite size, which is ranged from 26.003 to 42.001 nm. These findings indicate that these compounds are promising candidates for a range of optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y Song and Y L Zheng Sci. Forum 898 1935 (2017)

    Article  Google Scholar 

  2. Q Wang, Q Chang and Y Wang Lett. 173 64 (2016)

    Google Scholar 

  3. M Amiri, M Salavati-Niasari and A Pardakhty Sci. Eng. C 76 1085 (2017)

    Article  Google Scholar 

  4. M A Yousuf, M M Baig, N F Al-Khalli and M A Khan Int. 45 10936 (2019)

    Google Scholar 

  5. W Lv, B Liu, Q Qiu, F Wang and Z Luo J. Alloys Compd. 479 480 (2009)

    Article  Google Scholar 

  6. L-W Zhang Funct. Mater. 17 3781 (2007)

    Article  Google Scholar 

  7. M Salavati-Niasari and F Davar Mater. Lett. 63 441 (2009)

    Article  Google Scholar 

  8. K E Sickafus J. Am. Ceram. Soc. 82 3279 (2004)

    Article  Google Scholar 

  9. R Tiwari and M De H S Tewari and S K Ghoshal Results Phys. 16 102916 (2020)

    Article  Google Scholar 

  10. T T Ahmed J. Mater. Process. Technol. 153–154 797 (2004)

    Article  Google Scholar 

  11. A Sutka and G Mezinskis Mater. Sci. 6 128 (2012)

    Google Scholar 

  12. R Ianoş Eng. J. 240 260 (2014)

    Google Scholar 

  13. K V Kumar J. Nano Sci. Eng. 05 68 (2015)

    Google Scholar 

  14. M R Quirino, M J C Oliveira, D Keyson and G L Lucena Res. Bull. 74 124 (2016)

    Article  Google Scholar 

  15. A H Wako J. Rare Earths 32 806 (2014)

    Article  Google Scholar 

  16. A Manikandan Sci. Eng. Med. 7 33 (2015)

    Article  Google Scholar 

  17. G Padmapriya, A Manikandan and V Krishnasamy J. Supercond. Nov. Magn. 29 2141 (2016)

    Article  Google Scholar 

  18. L T T Vien, N Tu, M T Tran, N Van Du, D H Nguyen, D X Viet and N V Quang Mater. 100 109670 (2020)

    Google Scholar 

  19. C Gómez-Solís, S L Peralta-Arriaga and L M Torres-Martínez I Juárez-Ramírez and L A Díaz-Torres Fuel 188 197 (2017)

    Google Scholar 

  20. A E Giannakas and A K Ladavos Surf. Sci. 253 6969 (2007)

    Article  ADS  Google Scholar 

  21. C-T Wang J. Am. Ceram. Soc. 75 2240 (1992)

    Article  Google Scholar 

  22. M Sundararajan, M Sukumar, C S Dash, A Sutha, S Suresh, M Ubaidullah and A M Al-Enizi B Condens. Matter 644 414232 (2022)

    Article  Google Scholar 

  23. S Maitra Appl. Phys. 20 628 (2020)

    ADS  Google Scholar 

  24. A M Mansour Nano-Objects 25 100646 (2021)

    Article  Google Scholar 

  25. A Douy and M Capron J. Eur. Ceram. Soc. 23 2075 (2003)

    Article  Google Scholar 

  26. M Jamdar, R Monsef, S H Ganduh and E A Dawi Environ. Saf. 269 115801 (2024)

    Article  Google Scholar 

  27. E Carlos, R Martins, E Fortunato and R Branquinho Chem. – Eur. J. 26 9099 (2020)

  28. F Li and J Ran M Jaroniec and S Z Qiao Nanoscale 7 17590 (2015)

    Article  Google Scholar 

  29. F Deganello and A K Tyagi Prog. Cryst. Growth Charact. Mater. 64 23 (2018)

    Article  Google Scholar 

  30. I Miron and C Enache Scr. T149 014064 (2012)

    Google Scholar 

  31. M Panahi-Kalamuei J. Alloys Compd. 617 627 (2014)

    Article  Google Scholar 

  32. A Kadari, K Mahi and L O Faria J. Phys. 55 127 (2017)

    Google Scholar 

  33. M Muralidharan and S Selvakumar B Condens. Matter 615 413039 (2021)

    Article  Google Scholar 

  34. M Ashraf and S M J Akhtar Phys. J. Appl. Phys. 48 10501 (2009)

    Article  Google Scholar 

  35. O Laporte and W F Meggers J. Opt. Soc. Am. 11 459 (1925)

    Article  ADS  Google Scholar 

  36. S A Mirbagheri S M Masoudpanah and S Alamolhoda Optik 204 164170 (2020)

    Google Scholar 

  37. G T Anand, L J Kennedy and J J Vijaya Int. 41 603 (2015)

    Google Scholar 

  38. T S Mabelane, L F Koao, S V Motloung and T E Motaung J. Mol. Struct. 1260 132751 (2022)

    Article  Google Scholar 

  39. M Jafari and S A Hassanzadeh-Tabrizi Powder Technol. 266 236 (2014)

    Article  Google Scholar 

  40. C Ragupathi and J J Vijaya P Surendhar and L J Kennedy Polyhedron 72 1 (2014)

    Article  Google Scholar 

  41. H Teymourinia and M Salavati-Niasari J. Mol. Liq. 242 447 (2017)

    Article  Google Scholar 

  42. M Salavati-Niasari M Dadkhah and F Davar Polyhedron 28 3005 (2009)

    Article  Google Scholar 

  43. M Sivagami and I V Asharani Inorg. Chem. Commun. 145 110054 (2022)

    Article  Google Scholar 

  44. A A Othman and M A Osman B Condens. Matter 614 413041 (2021)

    Article  Google Scholar 

  45. S Peddarasi and D Sarkar Mater. Chem. Phys. 262 124275 (2021)

    Article  Google Scholar 

  46. T Tangcharoen J. Adv. Ceram. 8 352 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghlamallah Benabdellah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahi, K., Benabdellah, G., El Assad Zemallach Ouari, K. et al. Solution combustion synthesis of zinc and calcium aluminate spinel phase materials: optical and structural properties. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03187-3

Keywords

Navigation