Skip to main content
Log in

Dunkl–Pauli equation in the presence of a magnetic field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Pauli equation, an important equation of quantum mechanics, allows us to study the dynamics of spin-1/2 particles. The Dunkl derivative, when used instead of the ordinary derivative, leads to obtaining parity-dependent solutions. Motivated by these facts, in this work, we consider a two-dimensional non-relativistic spin-1/2 particle system in the presence of an external magnetic field, and we investigate its parity-dependent dynamics by solving the Pauli equation analytically. Next, we assume the system to be in thermal equilibrium, and we examine various thermal quantities of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. W Pauli Z. Phys. 43 601 (1927)

    Article  ADS  Google Scholar 

  2. P A M Dirac Proc. R. Soc. A 117 610 (1928)

    ADS  Google Scholar 

  3. E Ikenberry Quantum Mechanics for Mathematicians and Physicists (New York: Oxford University Press) p 241 (1962)

  4. V B Berestetskii, E M Lifshitz and L P Pitaevskii Relativistic Quantum Theory, (New York : Pergamon Press) p 103 (1971)

  5. A Messiah Quantum Mechanics (New York : Dover Press) p 935 (1995)

  6. W Greiner Quantum Mechanics: An Introduction (Berlin: Springer) p 339 (2001)

  7. F S Levin An Introduction to Quantum Theory (New York: Cambridge University Press) p 499 (2002)

  8. G Breit Phys. Rev. 34 553 (1929)

    Article  ADS  MathSciNet  Google Scholar 

  9. L L Foldy and S A Wouthuysen Phys. Rev. 78 29 (1950)

    Article  ADS  Google Scholar 

  10. A Galindo and C Sanchez del Rio Am. J. Phys. 29 582 (1961)

    Article  ADS  Google Scholar 

  11. T C Chapman and O Cerceau Am. J. Phys. 52 994 (1984)

    Article  ADS  Google Scholar 

  12. M Nowakowski Am. J. Phys. 67 916 (1999)

    Article  ADS  Google Scholar 

  13. T-W Chen and D-W Chiou Phys. Rev. A 82 012115 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. N L Chuprikov Found. Phys. 45 644 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. J M Wilkes Eur. J. Phys. 41 035402 (2020)

    Article  Google Scholar 

  16. V M Tkachuk J. Phys. A: Math. Gen. 31 1859 (1998)

    Article  ADS  Google Scholar 

  17. J Niederle and A G Nikitin J. Math. Phys. 40 1280 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. M V Ioffe and A I Neelov J. Phys. A: Math. Gen. 36 2493 (2003)

    Article  ADS  Google Scholar 

  19. A G Nikitin J. Math. Phys. 53 122103 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. A G Nikitin Int. J. Mod. Phys. A 14 885 (1999)

    Article  ADS  Google Scholar 

  21. A G Nikitin J. Phys. A: Math. Theor. 55 115202 (2022)

    Article  ADS  Google Scholar 

  22. E R Karat and M B Schulz Ann. Phys. 254 11 (1997)

    Article  ADS  Google Scholar 

  23. M M Cunha, F M Andrade and E O Silva Eur. Phys. J. Plus 138 118 (2023)

    Article  Google Scholar 

  24. D Kochan, D Krejčiřík, R Novák and P Siegl J. Phys. A: Math. Theor. 45 444019 (2012)

    Article  ADS  Google Scholar 

  25. T Kosugi J. Phys. Soc. Jpn. 80 073602 (2011)

    Article  ADS  Google Scholar 

  26. Y-L Wang, L Du, C-T Xu, X-J Liu and H-S Zong Phys. Rev. A 90 042117 (2014)

    Article  ADS  Google Scholar 

  27. M-N Célérier and L Nottale J. Phys. A: Math. Gen. 39 12565 (2006)

    Article  ADS  Google Scholar 

  28. M Heddar, M Falek, M Moumni and B C Lütfüoǧlu Mod. Phys. Lett. A 36 2150280 (2021)

    Article  ADS  Google Scholar 

  29. K Dechoum, H M França and C P Malta Phys. Lett. A 248 93 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. E P Wigner Phys. Rev. 77 711 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  31. L Yang Phys. Rev. 84 788 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  32. S Watanabe J. Math. Phys. 30 376 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. T Brzezinski, I L Egusquiza and A J Macfarlane Phys. Lett. B 311 202 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. R Chakrabarti and R Jagannathan J. Phys. A: Math. Gen. 27 L277 (1994)

    Article  ADS  Google Scholar 

  35. M S Plyushchay Ann. Phys. 245 339 (1996)

    Article  ADS  Google Scholar 

  36. C F Dunkl Trans. Am. Math. Soc. 311 167 (1989)

    Article  Google Scholar 

  37. G J Heckman Harmonic Analysis on Reductive Groups. Progress in Mathematics (eds) W H Barker and P J Sally (Boston : Birkhäuser) p 101 (1991)

  38. C F Dunkl Jpn. J. Math. 3 215 (2008)

    Article  MathSciNet  Google Scholar 

  39. C F Dunkl and Y Xu Encyclopedia of Mathematics and its Applications: Orthogonal Polynomials of Several Variables (Cambridge : Cambridge University Press) p 155 (2014)

  40. M Plyushchay Phys. Lett. B 320 91 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  41. K Hikami J. Phys. Soc. Jpn. 65 394 (1996)

    Article  ADS  Google Scholar 

  42. S Kakei J. Phys. A 29 L619 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. L Lapointe and L Vinet Commun. Math. Phys. 178 425 (1996)

    Article  ADS  Google Scholar 

  44. M Plyushchay Nucl. Phys. B 491 619 (1997)

    Article  ADS  Google Scholar 

  45. J Gamboa and M Plyushchay Nucl. Phys. B 543 447 (1999)

    Article  ADS  Google Scholar 

  46. M Plyushchay Int. J. Mod. Phys. A 15 3679 (2000)

    ADS  MathSciNet  Google Scholar 

  47. P A Horvathy and M Plyushchay Phys. Lett. B 595 547 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  48. P A Horvathy, M Plyushchay and M Valenzuela Ann. Phys. 325 1931 (2010)

    Article  ADS  Google Scholar 

  49. H de Bie, V X Genest, S Tsujimoto, L Vinet and A Zhedanov J. Phys: Con. Ser. 597 012001 (2015)

    Google Scholar 

  50. Y Luo, S Tsujimoto, L Vinet and A Zhedanov J. Phys. A: Math. Theor. 53 085205 (2020)

    Article  ADS  Google Scholar 

  51. C Quesne Mod. Phys. Lett. A 36 2150238 (2021)

    Article  ADS  Google Scholar 

  52. A Schulze-Halberg Mod. Phys. Lett. A 37 2250178 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  53. A Schulze-Halberg Mod. Phys. Lett. A 37 2250209 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  54. S Hassanabadi, J Kříž, B C Lütfüoǧlu and H Hassanabadi Phys. Scr. 97 125305 (2022)

    Article  ADS  Google Scholar 

  55. A Schulze-Halberg and P Roy Darboux transformations for Dunkl–Schroedinger equations with energy dependent potential and position dependent mass. arXiv:2301.11622 (2023)

  56. W S Chung, A Schulze-Halberg and H Hassanabadi Eur. Phys. J. Plus 138 66 (2023)

    Article  Google Scholar 

  57. A Schulze-Halberg Eur. Phys. J. Plus 138 491 (2023)

    Article  Google Scholar 

  58. A Schulze-Halberg Int. J. Mod. Phys. A 38 2350070 (2023)

    Article  ADS  Google Scholar 

  59. S Hassanabadi, P Sedaghatnia, W S Chung, B C Lütfüoǧlu, J Kříž and H Hassanabadi Eur. Phys. J. Plus 138 331 (2023)

    Article  Google Scholar 

  60. S H Dong, L F Quezada, W S Chung, P Sedaghatnia and H Hassanabadi Ann. Phys. 451 169259 (2023)

    Article  Google Scholar 

  61. V Genest, M Ismail, L Vinet and A Zhedanov J. Phys. A 46 145201 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  62. V Genest, L Vinet and A Zhedanov J. Phys. A 46 325201 (2013)

    Article  MathSciNet  Google Scholar 

  63. V Genest, M Ismail, L Vinet and A Zhedanov Commun. Math. Phys. 329 999 (2014)

    Article  ADS  Google Scholar 

  64. V Genest, L Vinet and A Zhedanov J. Phys. Conf. Ser. 512 012010 (2014)

    Article  Google Scholar 

  65. M Salazar-Ramirez, D Ojeda-Guillén and V D Granados Eur. Phys. J. Plus 132 39 (2017)

    Article  Google Scholar 

  66. S Sargolzaeipor, H Hassanabadi and W S Chung Mod. Phys. Lett. A 33 1850146 (2018)

    Article  ADS  Google Scholar 

  67. D Ojeda-Guillén, R D Mota, M Salazar-Ramírez and V D Granados Mod. Phys. Lett. A 35 2050255 (2020)

    Article  ADS  Google Scholar 

  68. R D Mota, D Ojeda-Guillén, M Salazar-Ramírez and V D Granados Ann. Phys. 411 167964 (2019)

    Article  Google Scholar 

  69. B Hamil and B C Lütfüoǧlu Eur. Phys. J. Plus 137 812 (2022)

    Article  Google Scholar 

  70. N Rouabhia, M Merad and B Hamil EPL 143 52003 (2023)

    Article  ADS  Google Scholar 

  71. R D Mota, D Ojeda-Guillén, M Salazar-Ramírez and V D Granados Mod. Phys. Lett. A 36 2150066 (2021)

    Article  ADS  Google Scholar 

  72. R D Mota, D Ojeda-Guillén, M Salazar-Ramírez and V D Granados Mod. Phys. Lett. A 36 2150171 (2021)

    Article  ADS  Google Scholar 

  73. B Hamil and B C Lütfüoǧlu Few-Body Syst. 63 74 (2022)

    Article  ADS  Google Scholar 

  74. A Merad and M Merad Few-Body Syst. 62 98 (2021)

    Article  ADS  Google Scholar 

  75. V X Genest, A Lapointe and L Vinet Phys Lett. A 379 923 (2015)

    Article  MathSciNet  Google Scholar 

  76. M Salazar-Ramirez, D Ojeda-Guillén, R D Mota and V D Granados Mod. Phys. Lett. A 33 1850112 (2018)

    Article  ADS  Google Scholar 

  77. S Ghazouani, I Sboui, M A Amdouni and M B El Hadj Rhouma J. Phys. A: Math. Theor. 52 225202 (2019)

    Article  ADS  Google Scholar 

  78. S Ghazouani and S Insaf J. Phys. A: Math. Theor. 53 035202 (2020)

    Article  ADS  Google Scholar 

  79. Y Kim, W S Chung and H Hassanabadi Rev. Mex. Fis. 66 411 (2020)

    Article  Google Scholar 

  80. S Ghazouani Anal. Math. Phys. 11 35 (2021)

    Article  MathSciNet  Google Scholar 

  81. R D Mota and D Ojeda-Guillén Mod. Phys. Lett. A 37 2250224 (2022)

    Article  ADS  Google Scholar 

  82. R D Mota and D Ojeda-Guillén Mod. Phys. Lett. A 37 2250006 (2022)

    Article  ADS  Google Scholar 

  83. E J Jang, S Park and W S Chung J. Korean Phys. Soc. 68 379 (2016)

    Article  ADS  Google Scholar 

  84. W S Chung and H Hassanabadi Mod. Phys. Lett. A 36 2150127 (2021)

    Article  ADS  Google Scholar 

  85. W S Chung and H Hassanabadi Rev. Mex. Fis. 66 308 (2020)

    Article  Google Scholar 

  86. S H Dong, W S Chung, G Junker and H Hassanabadi Results Phys. 39 105664 (2022)

    Article  Google Scholar 

  87. W S Chung and H Hassanabadi Mod. Phys. Lett. A 34 1950190 (2019)

    Article  ADS  Google Scholar 

  88. M R Ubriaco Physica A 414 128 (2014)

    Article  ADS  Google Scholar 

  89. H Hassanabadi, M de Montigny, W S Chung and P Sedaghatnia Physica A 580 126154 (2021)

    Article  Google Scholar 

  90. B Hamil and B C Lütfüoǧlu Eur. Phys. J. Plus 137 1241 (2022)

    Article  Google Scholar 

  91. F Merabtine, B Hamil, B C Lütfüoǧlu, A Hocine and M Benarous J. Stat. Mech. 2023 053102 (2023)

    Article  Google Scholar 

  92. B Hamil and B C Lütfüoǧlu Physica A 623 128841 (2023)

    Article  Google Scholar 

  93. A Hocine, B Hamil, F Merabtine, B C Lütfüoǧlu and M Benarous On Dunkl-Bose–Einstein Condensation in Harmonic Traps. arXiv:2308.10891 (2023)

  94. A Hocine, F Merabtine, B Hamil, B C Lütfüoǧlu and M Benarous The Condensation of Ideal Dunkl–Bose Gas in Power-Law Traps. arXiv: 2312.17585 (2023)

  95. P Sedaghatnia, H Hassanabadi, A D Alhaidari and W S Chung Int. J. Mod. Phys. A 37 2250223 (2023)

    Article  ADS  Google Scholar 

  96. P Sedaghatnia, H Hassanabadi, A A Araújo Filho, P J Porfirio and W S Chung Thermodynamical properties of a deformed Schwarzschild black hole via Dunkl generalization. arXiv:2302.11460 (2023)

  97. A A Araújo Filho and J A A S Reis Eur. Phys. J. Plus 136 310 (2021)

    Article  Google Scholar 

  98. A A Araújo Filho and A Y Petrov Eur. Phys. J. C 81 843 (2021)

    Article  ADS  Google Scholar 

  99. A A Araújo Filho Eur. Phys. J. Plus 136 417 (2021)

    Article  Google Scholar 

  100. A A Araújo Filho and A Y Petrov Int. J. Mod. Phys. A 36 2150242 (2021)

    Article  ADS  Google Scholar 

  101. A A Araújo Filho and R V Maluf Braz. J. Phys. 51 820 (2021)

    Article  ADS  Google Scholar 

  102. A A Araújo Filho, J Furtado, J A A S Reis and J E G Silva Class Quantum Grav. 40 245001 (2023)

    Article  ADS  Google Scholar 

  103. A A Araújo Filho, H Hassanabadi, J A A S Reis and L Lisboa-Santos Phys. Scr. 98 065943 (2023)

    Article  ADS  Google Scholar 

  104. A A Araújo Filho, J Furtado, H Hassanabadi and J A A S Reis Phys. Dark Univer. 42 101310 (2023)

    Article  Google Scholar 

  105. N Heidari, H Hassanabadi, A A Araújo Filho, J Kříž, S Zare and P J Porfírio Phys. Dark Univer. 43 101382 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Higher Education and Scientific Research, Algeria, under the Code: B00L02UN040120230003. B. C. Lütfüoğlu is grateful to the PřF UHK Excellence Project of 2211/2023-2024 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Lütfüoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguerne, H., Hamil, B., Lütfüoğlu, B.C. et al. Dunkl–Pauli equation in the presence of a magnetic field. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03170-y

Keywords

Navigation