Skip to main content
Log in

Thermoelectric, optoelectronic, and magnetic properties of Pb2CoWO6 double perovskite in the cubic phase: using DFT + U via spin–orbit coupling

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An orderly investigation concerning the magnetic stability, electronic, optical, and thermoelectric properties of the double perovskite Pb2CoWO6 compound, applying the precise full-potential linearized augmented plane wave (FP-LAPW) technique founded on density functional theory. The exchange and correlation potentials were treated using the Perdew and Ernzerhof generalized gradient approximation (GGA-PBE), GGA + U (U is the Coulomb interaction parameter), and GGA + U combined with the spin–orbit coupling. The ferrimagnetic phase offers significant level of stability compared to other magnetic state. The investigated compound is half-metal with bandgap energy 1.027 eV for GGA and 0.88 eV for GGA + U. A thorough examination of the effects spin–orbit interaction on the electronic structure contributed to the reduction of these values to 0.405 eV. The measured magnetic moment of Pb2CoWO6 is connected with Co atom. The linear optical functions dependent on the frequency and energy, while the results were determined for an extensive range of photon energy that go up to 14 eV. The Boltzmann transport model was implemented to evaluate the fundamental thermoelectric property’s parameters dependence on temperature and concentration charge carrier. Our calculations demonstrate that the examined substance exhibits p-type conduction and a substantial thermopower with all estimates. The Pb2CoWO6 compound is beneficial for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T Tritt and M Annu Rev. Mater. Res. 41 433 (2011).

    Article  ADS  Google Scholar 

  2. E L Pakizeh and J Jalilian RSC. Adv. 9 25900 (2019).

    Article  ADS  Google Scholar 

  3. A M Adam, Sh Ebrahimet and V Kovalyol Mater. Chem. Phys. 224 264 (2019).

    Article  Google Scholar 

  4. L Youngchai, L Changmin, L Hansaem and L Changhee Mater. Chem. Phys. 227 352 (2019).

    Article  Google Scholar 

  5. T Nada, A M Mousa and J M Khalifeh Results. Phys. 18 103331 (2020).

    Article  Google Scholar 

  6. O Sahnoun, H Bouhani, M Sahnoun and M Driz J. Alloys. Compd. 714 704 (2017).

    Article  Google Scholar 

  7. D Liu, F Y Zhao and G F Tang Renewable. Sustainable. Energy. Rev. 14 2736 (2010).

    Article  Google Scholar 

  8. R Funahashi, M Mikami, T Mihara, S Urata and N Ando J. Appl. Phys. 99 066117 (2006).

    Article  ADS  Google Scholar 

  9. H Scherrer et al Thermoelectrics (Handbook, CRC Press) Ch 15, Sec 4 p 1008, (2006)

  10. M Bashir, S Said, M Sabri and D Shnawah Sustainable. Energy. Rev. 375 69 (2014).

    Google Scholar 

  11. J Y Jung and I H Kim J. Electron. Mater. 40 1144 (2011).

    Article  ADS  Google Scholar 

  12. V Zaitsev, M Fedorov and E Gurieva In: Proceedings of XXIV International Conference on Thermoelectrics (Clemson, USA) p 189 (2005)

  13. J Tani and H Kido J. Alloys. Compd. 466 335 (2008).

    Article  Google Scholar 

  14. J I Tani and H Kido Condens. Matter. 364 218 (2005).

    ADS  Google Scholar 

  15. Q S Meng, H W Fan, X R Chen and Z A Munir J. Alloys. Compd. 509 7922 (2011).

    Article  Google Scholar 

  16. H Kido and J Tani Intermetallics. 15 1202 (2007).

    Article  Google Scholar 

  17. H Zhu, W Sun, R Armiento, P Lazic and G Ceder Appl. Phys. Lett. 104 082107 (2014).

    Article  ADS  Google Scholar 

  18. Y Pei, H Wang and G J Snyder Adv. Mater. 24 6125 (2012).

    Article  Google Scholar 

  19. J P Heremans, B Wiendlocha and M Chamoire Energy Environ. Sci. 5 5510 (2012).

    Article  Google Scholar 

  20. J Bahk, Z Bian and A Shakouri Phys. Rev. B 87 075204 (2013).

    Article  ADS  Google Scholar 

  21. J H Bahk, A Shakouri and Z Bian Phys. Rev. B 89 075204 (2014).

    Article  ADS  Google Scholar 

  22. D P Severin and M Fedorov Proc. of 25th International Conference on Thermoelectrics (Vienna) p 6 (2006)

  23. Y Pei, X Shi, A Lalonde, L Chen and G J Snyder Nature 473 66 (2011).

    Article  ADS  Google Scholar 

  24. W Liu, X Tan, K Yin, H Liu, X Tang, J Shi, Q Zhang and C Uher Phys. Rev. Lett. 108 166601 (2012).

    Article  ADS  Google Scholar 

  25. N Satyala and D Vashaee Appl. Phys. Lett. 100 073107 (2012).

    Article  ADS  Google Scholar 

  26. D Cederkrantz, N Farahi, K A Borup, B B Iversen, M Nygren and A E C Palmqvist J. Appl. Phys. 111 023701 (2012).

    Article  ADS  Google Scholar 

  27. G Xing et al Adv. Mater. 28 8191 (2016).

    Article  Google Scholar 

  28. X Guichuan, M Nripan, S Dharani, L Sien, Y Natalia, X Liu, D Sabba, G Michael, M Subodh and T C Sum Nat. Mater. 13 476 (2014).

    Article  Google Scholar 

  29. B Julian, P Norman, M Soo, H B Robin, G Peng, M K Nazeeruddin and M Gratzel Nature 499 316 (2013).

    Article  ADS  Google Scholar 

  30. X Guichuan, W Bo, D Bin, W Qi, S T Chien and W Huang Nat. Commun. 8 14558 (2017).

    Article  ADS  Google Scholar 

  31. H Li, G H Zhang, Y Zheng, B Wang and W J Chen Acta Mater. 76 472 (2014).

    Article  ADS  Google Scholar 

  32. S Rachedi, Y Azzaz, A Benamara, M Berrahal, N Moulay, M Liani, D Bensaid and Y Al-Douri Chim. Phys 573 111998 (2023).

    Google Scholar 

  33. K I Kobayashi, T Kimura, H Sawada and K Terakura Nature (London) 395 677 (1998).

    Article  ADS  Google Scholar 

  34. M Outayed, M Berrahal, G Benabdellah, M Mokhtari, N Moulay, D Bensaid and Y Azzaz Indian J. Phys. 82 1024 (2023).

    Google Scholar 

  35. G Baldinozzi State. Commun. 86 541 (1993).

    Article  ADS  Google Scholar 

  36. V A Isupov and P L Belous Phys. Chem. 16 129 (1971).

    Google Scholar 

  37. W Brixel, M L Werk, W Biihrer and J P Rivera J. Appl. Phys. 24 242 (1985).

    Article  Google Scholar 

  38. W Buehrer, M Ruedlinger, P Toledano, H Schmid and W Brixel Ph Scian Phys. B. 10 156 (1989).

    Google Scholar 

  39. Y N Venevtsev, D E Politova, A S Ivanov Ferro and Antiferroelectrics of the Barium Titanate Family, Chemistry ( Moscow) p 256 (1985)

  40. G Blasse J. Inorg. Nucl. Chem. 27 993 (1965).

    Article  Google Scholar 

  41. S A Ivanov, P Nordblad, R Mathieu, R Tellgren and C Ritter Dalton. Trans. 39 11136 (2010).

    Article  Google Scholar 

  42. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996).

    Article  ADS  Google Scholar 

  43. C Loschen, J Carrasco, K M Neyman and F Illas Phys. Rev. B 84 199906 (2011).

    Article  ADS  Google Scholar 

  44. G K H Madsen and P Novák Europhys. Lett. 69 777 (2005).

    Article  ADS  Google Scholar 

  45. P Blaha, K Schwarz, G Madsen, D Kvasnicka and J Luitz. WIEN2k: An augmented Plane Wave With Local Orbital Program for Crystal Property Calculation, Materials Science and Engineering book (Vienna ) (2017)

  46. K H Schwarz, P Blaha and G K H Madsen Comput. Phys. Commun. 147 71 (2002).

    Article  ADS  Google Scholar 

  47. J C Slater Phys. Rev. 51 846 (1937).

    Article  ADS  Google Scholar 

  48. P J Perdew Rev. Lett. 78 1396 (1997).

    Article  ADS  Google Scholar 

  49. S A Tolba, K M Gameel, B A Ali, H A Almossalami and N K Allam Density Functional Calculations-Recent Progresses of Theory and Application Ch 1 (2018)

  50. A I Vladimir J. Phys. Condens. Matter. 9 767 (1997).

    Article  Google Scholar 

  51. S Kumawat, M Rani and K Kumar Mater. Today Proc. 8 23 (2023).

    Google Scholar 

  52. W Pickett, S Erwin and E C Ethridge Phys. Rev. B 58 1201 (1998).

    Article  ADS  Google Scholar 

  53. F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944).

    Article  ADS  Google Scholar 

  54. M Musa-Saad and M Abdelhalim AIP Adv. 10 035027 (2020).

    Article  ADS  Google Scholar 

  55. A Rachedi, R Baghdad and A Nacef Optik. 227 166032 (2020).

    Article  ADS  Google Scholar 

  56. G Baldinozzi, P Sciau and J Lapasset Phys. Stat. Sol. 133 17 (1992).

    Article  ADS  Google Scholar 

  57. V M Goldschmidt and D G Krystallochemie Naturwissenschaften. 14 477 (1926).

    Article  ADS  Google Scholar 

  58. T Y Tang, X H Zhao, D Y Hu, Q Q Liang, X N Wei and Y L Tang RSC. Adv. 12 10209 (2022).

    Article  ADS  Google Scholar 

  59. W Travis, E N K Glover, D O Scanlonbc and R G Palgrave Chem. Sci. 7 4548 (2016).

    Article  Google Scholar 

  60. Y P Fu, M P Hautzinger, F F Wang, D X Pan, M M Aristov, X Y Zhu and S Jin ACS Cent. Sci. 5 1377 (2019).

    Article  Google Scholar 

  61. L Beldi and B Bouhafs Chem. Phys. 237 121875 (2019).

    Google Scholar 

  62. X Du, D F He, Y H Zhong and N P Cheng Phys. Lett. A. 384 126169 (2020).

    Article  Google Scholar 

  63. Y S Hou, H J Xiang and X G Gong Phys. Rev. B. 89 064415 (2014).

    Article  ADS  Google Scholar 

  64. B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid. Commun. 207 9 (2015).

    Article  ADS  Google Scholar 

  65. S Das, M D I Bhuyan and M A Basith J. Mater. Res. Technol. 13 2408 (2021).

    Article  Google Scholar 

  66. F Mott and Z Zinamon Rep. Prog. Phys. 33 881 (1970).

    Article  ADS  Google Scholar 

  67. J. Hubbard, Electron Correlations in Narrow Energy Bands. Proceedings of the Royal Society (London, Ser. A 283) pp 401–419 (1964)

  68. S Wang, C Ren, J Yu, H Tian and M Sun Phys. Chem. Chem. Phys. 20 13394 (2018).

    Article  Google Scholar 

  69. S Wang, H Tian, C Ren, J Yu and M Sun Sci. Rep. 8 12009 (2018).

    Article  ADS  Google Scholar 

  70. Y Luo, S Wang, H Shu, J P Chou, K Ren, J Yu and M Sun Semicond. Sci. Technol. 35 125008 (2020).

    Article  ADS  Google Scholar 

  71. K Djillali, M Mana and R Baghdad J. Comput. Mater. Sci. Eng. 9 2050013 (2020).

    Google Scholar 

  72. F Hamioud, G S Al-Glianali, S Al Omari and A A Mubarak Int. J. Mod. Phys. B 30 1650031 (2016).

    Article  ADS  Google Scholar 

  73. V S Zhandun and V I Zinenko J. Alloys Compd. 671 184 (2016).

    Article  Google Scholar 

  74. Z H Jin, Y M Wu, S Li, Q F Wu, W B Zhang and C Z Zhang Results. Phys. 22 103860 (2021).

    Article  Google Scholar 

  75. S Hussain, G Murtaza, S H Khan, A Khan, A Khan, A M Azmat, M Faizan, A Mahmood and R Khenata Mater. Res. Bull. 79 73 (2016).

    Article  Google Scholar 

  76. M Gajdos, K Hummer, G Kresse, J Furthmuller and F Bechstedt Phys. Rev. B. 73 045112 (2006).

    Article  ADS  Google Scholar 

  77. D C Hutchings, M S Bahae, D J Hagan and E W Van Stryland Opt. Quant. Electron. 24 30 (1992).

    Article  Google Scholar 

  78. C M Okoye J. Phys. Condens. Matte. 15 5945 (2003).

    Article  ADS  Google Scholar 

  79. D Penn Phys. Rev. 128 2093 (1962).

    Article  ADS  Google Scholar 

  80. G Fabrice PhD Thesis (University of Nantes, France)

  81. A Amin, G Nazir, Q Mahmood, J Alzahrani, N Kattan, A Merae, H Mirzag, A Mezni, S Refat, A Gobouri and T Altalhi J. Mater. Res. Technol. 18 4403 (2022).

    Article  Google Scholar 

  82. B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid. State. Commun. 207 9 (2015).

    Article  ADS  Google Scholar 

  83. P K Upadhyay, V K Jain and S Sharma Ser. Mater. Sci. Eng. 798 012025 (2020).

    Google Scholar 

  84. J Yang and J Y Ying Chem. Int. Ed. 50 4637 (2011).

    Article  Google Scholar 

  85. E Bringuier Eur. J. Phys. 40 025103 (2019).

    Article  Google Scholar 

  86. G K H Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006).

    Article  ADS  Google Scholar 

  87. L Weishu, R Zhifeug and C Gang Nanostruct. Thermoelect. Mater. 4 182 (2013).

    Google Scholar 

  88. A D LaLonde, Y Pei, H Wang and G J Snyder Mater. Today 14 526 (2011).

    Article  Google Scholar 

  89. F Fouddad, S Hiadsi, L Bouzid, F Y Ghrici and K Bekhadda Mater. Sci. Semicond. Process. 107 104801 (2020).

    Article  Google Scholar 

  90. K Momma and F Izurni J. Appl. Crystallogr. 44 1272 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fodil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fodil, M., Touia, A., Bousalem, S. et al. Thermoelectric, optoelectronic, and magnetic properties of Pb2CoWO6 double perovskite in the cubic phase: using DFT + U via spin–orbit coupling. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03154-y

Keywords

Navigation