Skip to main content
Log in

Solid-State Synthesis of Te-Doped Mg2Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Te-doped Mg2Si (Mg2Si:Te m , m = 0, 0.01, 0.02, 0.03, 0.05) alloys were synthesized by a solid-state reaction and mechanical alloying. The electronic transport properties (Hall coefficient, carrier concentration, and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit) were examined. Mg2Si was synthesized successfully by a solid-state reaction at 673 K for 6 h, and Te-doped Mg2Si powders were obtained by mechanical alloying for 24 h. The alloys were fully consolidated by hot-pressing at 1073 K for 1 h. All the Mg2Si:Te m samples showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased and the absolute value of the Seebeck coefficient decreased with increasing Te content, because Te doping increased the electron concentration considerably from 1016 cm−3 to 1018 cm−3. The thermal conductivity did not change significantly on Te doping, due to the much larger contribution of lattice thermal conductivity over the electronic thermal conductivity. Thermal conduction in Te-doped Mg2Si was due primarily to lattice vibrations (phonons). The thermoelectric figure of merit of intrinsic Mg2Si was improved by Te doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.N. Nikitin, V.G. Bazanov, and V.I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).

    Google Scholar 

  2. J.L. Corkill and M.L. Cohen, Phys. Rev. B 48, 17138 (1993).

    Article  CAS  Google Scholar 

  3. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), chap. 29.

  4. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  CAS  Google Scholar 

  5. R.J. LaBotz, D.R. Mason, and D.F. O’Kane, J. Electrochem. Soc. 110, 127 (1963).

    Article  CAS  Google Scholar 

  6. T.C. Harman, P.J. Taylor, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 29, L1 (2000).

    Article  CAS  Google Scholar 

  7. T.M. Tritt, Science 272, 1276 (1996).

    Article  CAS  Google Scholar 

  8. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  9. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics (Berlin: Springer-Verlag, 2000), p. 146.

    Google Scholar 

  10. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  CAS  Google Scholar 

  11. S. Bose, H.N. Acharya, and H.D. Banerjee, J. Mater. Sci. 28, 5461 (1993).

    Article  CAS  Google Scholar 

  12. C. Vining, Proceedings of 10th International Conference on Thermoelectrics (1991) p. 249.

  13. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 845 (1992).

    CAS  Google Scholar 

  14. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, and K. Masumoto, Mater. Trans. JIM 33, 851 (1992).

    CAS  Google Scholar 

  15. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1916 (1958).

    Article  Google Scholar 

  16. M.W. Heller and G.C. Danielson, J. Phys. Chem. Solids 23, 601 (1962).

    Article  CAS  Google Scholar 

  17. Q. Zhang, X.B. Zhao, H. Yin, and T.J. Zhu, J. Alloys Compd. 464, 9 (2008).

    Article  CAS  Google Scholar 

  18. M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi, J. Cryst. Growth 304, 196 (2007).

    Article  CAS  Google Scholar 

  19. J. Tani and H. Kido, Physica B 364, 218 (2005).

    Article  CAS  Google Scholar 

  20. J. Schilz, M. Riffel, K. Pixius, and H.-J. Meyer, Powder Tech. 105, 149 (1999).

    Article  CAS  Google Scholar 

  21. C.B. Vining, Handbook of Thermoelectrics, ed. D.M. Rowe (CRC: New York, 1995), p. 277.

    Google Scholar 

  22. C.C. Koch, Material Science and Technology 7, ed. P.W. Cahn, P. Haasen, and E.J. Kramer (Germany: VCH Weinheim, 1991), p. 193.

    Google Scholar 

  23. B.A. Cook, B.J. Beaudry, J.L. Harringa, and W.J. Barnett, Proceedings of 24th Intersociety Energy Conversion Engineering Conference (1989) p. 693.

  24. C. Suryanarayana, Bibliography on Mechanical Alloying and Milling (Cambridge, UK: Cambridge International Science Publishing, 1995), p. 439.

    Google Scholar 

  25. J.H. Yang, S. Chen, W.J. Yin, and X.G. Gong, Phys. Rev. B 79, 245202 (2009).

    Article  Google Scholar 

  26. J.J. Martin, J. Phys. Chem. Solids 33, 1139 (1972).

    Article  CAS  Google Scholar 

  27. P.S. Kireev, Semiconductor Physics (Moscow: Mir, 1978), p. 253.

    Google Scholar 

  28. H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1985), p. 42.

    Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JY., Kim, IH. Solid-State Synthesis of Te-Doped Mg2Si. J. Electron. Mater. 40, 1144–1149 (2011). https://doi.org/10.1007/s11664-011-1558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1558-4

Keywords

Navigation