Skip to main content
Log in

Appraising the impact of space radiation on the terrestrial environment

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Near-Earth space environment is impacted by various radiation sources like galactic cosmic rays, solar storms, geomagnetic storms, etc. In the present paper, we have estimated the impact of space radiation observed during the last four cycles. We have observed that during solar cycle 24, there were fewer solar radiation storms than during its three preceding solar cycles. In terms of solar radiation storm strength, solar cycle 22 recorded a maximum intensity of S4 (severe radiation storm) of ~ 43000 pfu. In comparison, the maximum intensity of solar cycle 24 was ~ 6530 pfu (S3 type). We have concluded that the intensity of an X-class flare did not predict the intensity of the ensuing geomagnetic activity. The flares with less intensity in X-rays, e.g. M-class and C-class flares, can give rise to stronger radiation storms. Using the NOAA scales, we have compared the data of intense radiation storms with geomagnetic storms of higher intensity. This analysis has revealed that there were only 11 days during solar cycles 23 and 24 where the maximum solar radiation storm (solar particle event) coincided with a period of severe geomagnetic storming. On comparison of monthly neutron count (cosmic ray intensity) relative to the average of the last 20 years, we also deduced that the neutron count was 7.12% greater than usual during the most recent solar low, which was nearly as high as the last solar cycle lowest (8.20%). We have observed the lower probability rate of Solar Particle Events during the 3 or so years cantered on solar minimum, and the probability does not necessarily peak within a few years of solar maximum. The intensity of relativistic electrons observed by GOES in geostationary orbit was relatively low during periods of low geomagnetic activity and low solar wind speed, and the outer belt 2 MeV electrons flux appears to be highly associated with the Dst index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J Feynman and S F Martin J. Geophys. Res. 100 3355 (1995)

    Article  ADS  Google Scholar 

  2. T Sakao, R Kano, N Narukage, J Kotoku, T Bando, E E Deluca Science 318 1585 (2007)

    Article  ADS  Google Scholar 

  3. D H Hathway Living Rev. Sol. Phys. 12 4 (2015)

    Article  ADS  Google Scholar 

  4. A Bhargawa, M Yakub and A K Singh Astron. Astrophys. 19 02 (2019)

    Article  Google Scholar 

  5. G Reitz Zeitschrift für Medizinische Physik 18 233 (2008)

    Article  Google Scholar 

  6. A Bhargawa and A K Singh Adv. Space Res. 68 2643 (2021)

    Article  ADS  Google Scholar 

  7. M C Fok, R B Horne, N P Meredith and S A Glauert J. Geophys. Res. 113 A03S08 (2008)

    Google Scholar 

  8. L W Townsend In A J Coster, P J Erickson, L J Lanzerotti, Y Zhang and L J Paxton (eds) (2021)

  9. D Burgess Astrophys. J. 653 316 (2006)

    Article  ADS  Google Scholar 

  10. N Gopalswamy J. Geophys. Res. 112 A06112 (2007)

    ADS  Google Scholar 

  11. D N Baker, M Bodeau In A J Coster, P J Erickson, L J Lanzerotti, Y Zhang and L J Paxton (eds.) (2021)

  12. Y Zheng, N Y Ganushkina, P Jiggens, I Jun, M Meier, J I Minow et al Space Weather 17 1384 (2019)

    Article  ADS  Google Scholar 

  13. K L Klein and A Posner Astron. Astrophys. 438 1029 (2005)

    Article  ADS  Google Scholar 

  14. C J Rodger, M A Clilverd, P T Verronen, T Ulich, M J Jarvis and E Turunen J. Geophys. Res. 111 A04222 (2006)

    ADS  Google Scholar 

  15. B T Kress, M K Hudson, R S Selesnick, C J Mertens and M Engel J. Geophys. Res. 120 5694 (2015)

    Article  Google Scholar 

  16. A K Singh and A Bhargawa J. Basic Appl. Sci. 16 105 (2020)

    Google Scholar 

  17. N H Crisp et al Sciences 117 100619 (2020)

    Google Scholar 

  18. P Srivastava and A K Singh Ind. J. Phys. (2023). https://doi.org/10.1007/s12648-023-02987-3

    Article  Google Scholar 

  19. L Sihver and S Mortazavi IEEE Aerospace Conference 2019 pp. 1 (2019)

  20. L A Fisk J. Geophys. Res. 76 221 (1971)

    Article  ADS  Google Scholar 

  21. H Moraal Space Sci. Rev. 176 299 (2011)

    Article  ADS  Google Scholar 

  22. P Bobik, M Putis, Y L Kolesnyk and B A Shakhov MNRAS 503 3 (2021)

    Article  Google Scholar 

  23. A F Barghouty and R A Mewaldt Astrophys J. 520 L127 (1999)

    Article  ADS  Google Scholar 

  24. D Yiltas and A H Zaim Int. J. Satell. Commun. Netw. 27 103 (2009)

    Article  Google Scholar 

  25. A Posner Space Weather 5 S05001 (2007)

    Article  ADS  Google Scholar 

  26. A P Jordan, T J Stubbs, J K Wilson, N A Schwadron and H E Spence J. Geophys. Res. Space Phys. 120 210 (2015)

    Article  ADS  Google Scholar 

  27. B H Mauk et al J. Geophys. Res. Space Phys. 125 28697 (2020)

    ADS  Google Scholar 

  28. J Ren et al J. Geophys. Res.: Space Phys. 123 5334 (2018)

    Article  ADS  Google Scholar 

  29. A A Bahadori et al Phys. Med. Biol. 56 1671 (2011)

    Article  Google Scholar 

  30. P K Soni, B Kakad and A Kakad Space Res. 67 749 (2021)

    Article  ADS  Google Scholar 

  31. M Dierckxsens et al Sol. Phys. 290 841 (2015)

    Article  ADS  Google Scholar 

  32. N Gopalswamy et al Ann. Geophys. 26 3033 (2008)

    Article  ADS  Google Scholar 

  33. D V Reames Space Sci. Rev. 175 53 (2013)

    Article  ADS  Google Scholar 

  34. S Koldobskiy, O Raukunen, R Vainio, G A Kovaltsov and I Usoskin I Usoskin Astron. & Astrophys. 647 A132 (2021)

    Article  ADS  Google Scholar 

  35. Y Kamide and K Kusano Space Weather 13 365 (2015)

    Article  ADS  Google Scholar 

  36. N Lugaz, C J Farrugia, R M Winslow, N Al-Haddad, E K J Kilpua and P Riley J. Geophys. Res.: Space Phys. 121 10861 (2016)

    Article  ADS  Google Scholar 

  37. A V Dmitriev et al J. Geophys. Res. Space Phys. 122 2398 (2017)

    Article  ADS  Google Scholar 

  38. H V Cane, R E McGuire and T T von Rosenvinge Astrophys. J. 301 448 (1986)

    Article  ADS  Google Scholar 

  39. D C Ellison, E Möbius and G Paschmann Astrophys. J. 352 376 (1990)

    Article  ADS  Google Scholar 

  40. K Bamert et al Astrophys. J. 601 L99 (2004)

    Article  ADS  Google Scholar 

  41. S W Kahler, E Hildner and M A I Van Hollebeke Sol. Phys. 57 429 (1978)

    Article  ADS  Google Scholar 

  42. D Lario et al Eur. Space Agency Spec. Publ. ESA-SP 592 81 (2005)

    ADS  Google Scholar 

  43. A K Singh, A Bhargawa and A Tonk J. Astrophys. Astron. 39 32 (2018)

    Article  ADS  Google Scholar 

  44. P Srivastava and A K Singh Int. J. Emerg. Technol. Innov. Res. 8 b123 (2021)

    Google Scholar 

  45. M J Aschwanden and D Alexander Sol. Phys. 204 91 (2001)

    Article  ADS  Google Scholar 

  46. B V Somov Astrophysics and Space Science Library, vol 392 (New York: Springer) (2013)

    Google Scholar 

  47. A Rouillard and M Lockwood Sol. Phys. 245 191 (2007)

    Article  ADS  Google Scholar 

  48. S R Thomas, M J Owens and M Lockwood Sol. Phys. 289 407 (2014)

    Article  ADS  Google Scholar 

  49. A K Singh and A Bhargawa Astrophys. Space. Sci. 362 199 (2017)

    Article  ADS  Google Scholar 

  50. A K Singh and A Bhargawa Astrophys. Space Sci. 364 12 (2019)

    Article  ADS  Google Scholar 

  51. C T Russell, J G Luhmann and L K Jian Rev. Geophys. 48 2004 (2010)

    Article  ADS  Google Scholar 

  52. A K Singh and A Bhargawa Adv. Space Res. 65 1831 (2020)

    Article  ADS  Google Scholar 

  53. A K Singh, A Tonk and R Singh Ind. J. Phys. 88 11 1127 (2014)

    Article  Google Scholar 

  54. H Winkler et al J. Geophys. Res. 113 D02302 (2008)

    ADS  Google Scholar 

  55. A K Singh, A Bhargawa, D Siingh and R P Singh Geosciences 11 286 (2021)

    Article  ADS  Google Scholar 

  56. J W Wilson et al Radiat. Meas. 30 361 (1999)

    Article  Google Scholar 

  57. A K Singh and A Tonk Astrophys. Space Sci. 353 2 367 (2014)

    Article  ADS  Google Scholar 

  58. A K Singh and R P Singh Ind. J. Phys. 77 6 (2003)

    Google Scholar 

  59. M I Panasyuk et al Cosm. Res. 55 79 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the organizations that have provided online solar and related data. Data for Solar Proton Events (SPEs) have been taken from the NOAA Space Environment Services Center: https://umbra.nascom.nasa.gov/SEP/. The coronal mass ejections and solar flares data have been taken from the website https://cdaw.gsfc.nasa.gov. Cosmic ray neutron count data have been adopted from the Cosmic Ray Station of the University of Oulu, Finland; https://cosmicrays.oulu.fi/. The Space Weather Prediction Center (SWPC) has provided the data-related graphs of X-ray flux related to solar flares. Data related to geomagnetic storm indices viz., Dst and Kp were taken from the World Data Center (http://wdc.kugi.kyoto-u.ac.jp/dstdir/). PS is thankful to the University Grants Commission (UGC), India, for financial support as JRF/SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Singh.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Yadav, S. & Singh, A.K. Appraising the impact of space radiation on the terrestrial environment. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03150-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03150-2

Keywords

Navigation