Skip to main content
Log in

Morris–Thorne-type wormhole with a cosmic string effects on harmonic oscillator problem

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, we explore quantum dynamics of non-relativistic particles within the context of a Morris–Thorne-type wormhole space-time featuring a cosmic string. Our investigation focuses on the eigenvalue solution of Schrödinger equation by utilizing the confluent Heun equation. We demonstrate that the cosmic string and the wormhole throat radius leads to significant modifications in the energy levels and wave functions of non-relativistic quantum particles. As a consequence, the degeneracy of the energy spectrum is disrupted. Subsequently, we extend our analysis to the harmonic oscillator problem, where non-relativistic particles interact harmonically within the same wormhole space-time background with a cosmic string. Employing a similar approach, we obtain the eigenvalue solution for the harmonic oscillator and analyze this solution to show the influence of the cosmic string parameter and the radius of the wormhole throat. In both scenarios, we obtain exact analytical solutions for the wave equation and specifically, we present the ground-state energy level \(E_{1,m}\) and the corresponding wave function \(\psi _{1,m}\) as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

No new data were analysed in this study.

References

  1. A Vilenkin Phys. Lett. B 133 177 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. A Vilenkin Phys. Rep. 121 263 (1985)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. B Linet Gen. Relativ. Gravit. 17 1109 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. A Vilenkin and E P S Shellard Strings and Other Topological Defects (Cambridge: Cambridge University Press) (1994)

    Google Scholar 

  5. H Kleinert Gauge fields in Condensed Matter (Singapore: World Scientific) (1989)

    Book  Google Scholar 

  6. M O Katanaev and I V Volovich Ann. Phys. (NY) 216 1 (1992)

  7. K C Valanis and V P Panoskaltsis Acta Mech. 175 77 (2005)

  8. R A Puntigam and H H Soleng Class. Quantum Grav. 14 1129 (1997)

    Article  ADS  CAS  Google Scholar 

  9. K Bakke and C Furtado Phys. Rev. A 87 012130 (2013)

    Article  ADS  Google Scholar 

  10. A V D M Maia and K Bakke Phys. B 531 213 (2018)

    Article  ADS  CAS  Google Scholar 

  11. A V D M Maia and K Bakke Universe 168 3 8 (2022)

  12. A V D M Maia and K Bakke Eur. Phys. J. C 79 551 (2019)

    Article  ADS  Google Scholar 

  13. A V D M Maia and K Bakke Commun. Theor. Phys. 73 025103 (2021)

    Article  ADS  Google Scholar 

  14. T Figielski J. Phys.: Cond. Matter 14 12665 (2012)

    ADS  Google Scholar 

  15. W C F da Silva and K Bakke Ann. Phys. (NY) 421 168277 (2020)

    Article  Google Scholar 

  16. R L L Vitoria and K Bakke Eur. Phys. J. C 78 175 (2018)

    Article  ADS  Google Scholar 

  17. S Zare, H Hassanabadi and G Junker Eur. Phys. J. Plus 138 354 (2023)

    Article  Google Scholar 

  18. H Hassanabadi, S Zare, J Kříž and B C Lütfüoğlu EPL 132 60005 (2020)

  19. S Zare, H Hassanabadi and M de Montigny Eur. Phys. J. Plus 135 122 (2020)

    Article  Google Scholar 

  20. B C Lütfüoğlu, J Kříž, S Zare and H Hassanabadi Phys. Scr. 96 015005 (2021)

    Article  ADS  Google Scholar 

  21. B C Lütfüoğlu, J Kříž, P Sedaghatnia and H Hassanabadi Eur. Phys. J. Plus 135 691 (2020)

    Article  Google Scholar 

  22. P Sedaghatnia, H Hassanabadi and G J Rampho Int. J Mod. Phys. A 35 2050108 (2020)

    Article  ADS  CAS  Google Scholar 

  23. S Zare, H Hassanabadi, G J Ra, G J Rampho and A N Ikot Eur. Phys. J. Plus 135 748 (2020)

    Article  Google Scholar 

  24. S Zare, H Hassanabadi and Marc de Montigny Int. J Mod. Phys. A 35 2050195 (2020)

    Article  ADS  CAS  Google Scholar 

  25. S Hassanabadi, S Zare, B C Lütfüoğlu, J Kříž and H Hassanabadi Int. J Mod. Phys. A 36 2150100 (2021)

    Article  ADS  CAS  Google Scholar 

  26. A Guvendi, S Zare and H Hassanabadi Eur. Phys. J. A 57 192 (2021)

    Article  ADS  CAS  Google Scholar 

  27. S Zare, H Hassanabadi and G Junker Int. J. Mod. Phys. A 36 2150215 (2021)

    Article  ADS  CAS  Google Scholar 

  28. S Zare, H Hassanabadi and A Guvendi Eur. Phys. J. Plus 137 589 (2022)

    Article  Google Scholar 

  29. S Zare, H Hassanabadi and G Junker Gen. Relativ. Gravit. 54 69 (2022)

    Article  ADS  Google Scholar 

  30. M Hosseinpour, F M Andrade, E O Silva and H Hassanabadi Eur. Phys. J. C 77 270 (2017)

    Article  ADS  Google Scholar 

  31. M Hosseinpour and H Hassanabadi Int. J. Mod. Phys. A 30 1550124 (2015)

  32. W C F da Silva, K Bakke and R L L Vitoria Eur. Phys. J. C 79 657 (2019)

  33. M J Bueno, C Furtado and K Bakke Physica B: Cond. Matter 496 45 (2016)

  34. C Furtado and F Moraes J. Phys. A: Math. Gen. 33 5513 (2000)

  35. F. Ahmed Proc. R. Soc. A 479 20220624 (2023)

  36. S Azevedo Phys. Lett. A 288 33 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. R. L. L. Vitoria and H. Belich Phys. Scr. 94 125301 (2019)

  38. L. C. N. Santos, F. M. Da Silva, C. E. Mota and V. B. Bezerra Int. J. Geom. Meth. Mod. Phys. 20 23F.M.50067 (2023)

  39. F Ahmed EPL 141 54001 (2023)

    Article  ADS  Google Scholar 

  40. F Ahmed Sci. Rep. 13 12953 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. K Bakke Eur. Phys. J. Plus 134 546 (2019)

    Article  Google Scholar 

  42. W. C. F. da Silva and K. Bakke Class. Quantum Grav. 36 235002 (2019)

  43. L. F. C. Pereira, F. M. Andrade, C. Filgueiras and E. O. Silva Few-Body System 63 64 (2022)

  44. C Filgueiras and F Moraes Ann. Phys. (NY) 323 3150 (2008)

    Article  ADS  CAS  Google Scholar 

  45. C. Filgueiras, E. O. Silva and F. M. Andrade J. Math. Phys. 53 122106 (2012)

  46. C Furtado, B G C da Cunha, F Moraes, E R Bezerra de Mello and V B Bezzerra Phys. Lett. A 195 90 (1994)

  47. G Ferrari and G Cuoghi Phys. Rev. Lett. 230403 230403100 (2008)

  48. E. O. Silva, S. C. Ulhoa, F. M. Andrade, C. Filgueiras and R. G. G. Amorin Ann. Phys. (NY) 362 739 (2015)

  49. K. Bakke and C. Furtado Int. J Geom. Meths. Mod. Phys. 16 1950172 (2019)

  50. L. Dantas, C. Furtado and A. L. S. Netto Phys. Lett. A 379 11 (2015)

  51. C Furtado EPL 79 57001 (2007)

    Article  ADS  Google Scholar 

  52. A L S Netto, C Chesman and C Furtado Phys. Lett. A 372 3894 (2008)

    Article  ADS  Google Scholar 

  53. C O Edeta and A N Ikot Rev. Mex. Fis. 68 051501 (2022)

    Google Scholar 

  54. C Furtado and F Moraes EPL 45 279 (1999)

    Article  ADS  CAS  Google Scholar 

  55. H Chen, S Zare, H Hassanabadi and Z-W Long Indian-J Phys. 96 4219 (2022)

    Article  ADS  CAS  Google Scholar 

  56. H Hassanabadi and M Hosseinpour Eur. Phys. J. C 76 553 (2016)

    Article  ADS  Google Scholar 

  57. S. Zare, H. Hassanabadi and Marc de Montigny Int. J Mod. Phys. A 35 2050071 (2020)

  58. G D A Marques, J G De Assis and V B Bezerra J. Math. Phys. 48 112501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  59. G D A Marques and V B Bezerra Class. Quantum Grav. 19 985 (2002)

    Article  ADS  Google Scholar 

  60. L Flamm Physikalische Zeitschrift XVII 448 (1916)

    Google Scholar 

  61. A Einstein and N Rosen Phys. Rev. 48 73 (1935)

    Article  ADS  CAS  Google Scholar 

  62. H G Ellis J. Math. Phys. 14 104 (1973)

    Article  ADS  Google Scholar 

  63. K A Bronnikov Acta Phys. Pol. B 4 251 (1973)

    Google Scholar 

  64. J A Gonzalez, F S Guzman and O Sarbach Class. Quantum Grav. 26 01510 (2009)

    Google Scholar 

  65. J A Gonzalez, F S Guzman and O Sarbach Class. Quantum Grav. 26 015011 (2009)

    Article  ADS  Google Scholar 

  66. J L B Salcedo, X Y Chew and J Kunz Phys. Rev. D 98 044035 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  67. J L B Salcedo, M A Dariescu, C Dariescu, E Radu and C Stelea Phys. Lett. B 827 136993 (2022)

    Article  Google Scholar 

  68. M S Morris and K S Thorne Amer. J. Phys. 56 395 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  69. M Visser Lorentzian wormholes: From Einstein to Hawking (USA: Woodbury) (1995)

    Google Scholar 

  70. T Müller Phys. Rev. D 77 044043 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  71. S Eyasmin, D Chakraborty and M Sarkar J. Geom. Phys. 174 104457 (2022)

  72. F R Klinkhamer Acta Phys. Polo. B 54 5-A3 (2023)

  73. F Ahmed EPL 142 39002 (2023)

  74. A Ahmed Few-Body System 64 80 (2023)

  75. A Ronveaux Heun’s Differential Equations (Oxford: Oxford University Press) (1995)

    Book  Google Scholar 

  76. M Abramowitz and I A Stegun Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) (1972)

    Google Scholar 

  77. G B Arfken and H J Weber Mathematical Methods for Physicists (New York: Elsevier Academic Press)) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Ethics declarations

Conflict of interest

There are no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The solutions of angular equations

Substituting (7) in the Eq. (8) and using the wave function (9), one will find the angular equation (12) as follows:

$$\begin{aligned} \Bigg [\frac{1}{\sin \theta }\,\frac{d}{\textrm{d}\theta }\,\Big (\sin \theta \,\frac{d}{\textrm{d}\theta }\Big )+\frac{1}{\alpha ^2\,\sin ^2 \theta }\,\frac{d^2}{\textrm{d}\phi ^2}+\ell '\,(\ell '+1)\Bigg ]\,Y(\theta ,\phi )=0. \end{aligned}$$
(43)

Let us substitute \(Y (\theta ,\phi )=A(\theta )\,B(\phi )\) in the Eq. (43) and after simplification, we obtain the azimuthal equation as follows:

$$\begin{aligned} \frac{1}{\alpha ^2}\,\frac{d^2 B(\phi )}{\textrm{d}\phi ^2}+m'^2\,B(\phi )=0. \end{aligned}$$
(44)

And the polar equation

$$\begin{aligned} \Bigg [\frac{1}{\sin \theta }\,\frac{d}{\textrm{d}\theta }\,\Big (\sin \theta \,\frac{d}{\textrm{d}\theta }\Big )+\ell '\,(\ell '+1)-\frac{m'^2}{\sin ^2 \theta }\Bigg ]\,A(\theta )=0. \end{aligned}$$
(45)

Let a solution to the Eq. (44) is given by

$$\begin{aligned} B(\phi )=e^{i\,m\,\phi }. \end{aligned}$$
(46)

Substituting (46) in the Eq. (44), we obtain

$$\begin{aligned} \Big (-\frac{m^2}{\alpha ^2}+m'^2\Big )\,B(\phi )=0\Rightarrow m'=\frac{m}{\alpha }. \end{aligned}$$
(47)

For the Eq. (45), let us change a variable by \(x=\cos \theta \). The equation with the function \(A(\theta )\) becomes

$$\begin{aligned} \Bigg [(1-x^2)\,\frac{d^2}{\textrm{d}x^2}-2\,x\,\frac{d}{\textrm{d}x}+\ell '\,(\ell '+1)-\frac{m'^2}{1-x^2}\Bigg ]\,A(x)=0 \end{aligned}$$
(48)

which is the associated Legendre polynomials equation whose solutions are given by

$$\begin{aligned} A(x)=P^{m'}_{\ell '}(x)=(-1)^{m'}\,(1-x^2)^{m'/2}\,\frac{d^{m'}}{\textrm{d}x^{m'}}\,[P_{\ell '}(x)], \end{aligned}$$
(49)

where superscript \(m'\) indicates the order and \(P_{\ell '} (x)\) are polynomials of degree \(\ell '\) given by

$$\begin{aligned} P_{\ell '}=\frac{1}{2^{\ell '}\,\ell '!}\,\frac{d^{\ell '}}{\textrm{d}x^{\ell '}}\,(x^2-1)^{\ell '}. \end{aligned}$$
(50)

Noted that the Legendre polynomials \(P_{\ell '} (x)\) are polynomials of order \(\ell '\) provided the magnetic quantum number \(m'\) must have values less than or equal to \(\ell '\). That is

$$\begin{aligned} \ell '\ge |m'|\quad \text{ or }\quad \ell '=|m'|+\kappa ,\quad \kappa =0,1,2,\ldots .. \end{aligned}$$
(51)

Throughout the analysis we have written \(\ell '\) and \(m'\) because of the presence of cosmic string in the quantum system. For \(\alpha \rightarrow 1\), one will get back the standard azimuthal and polar equations which were given in many textbooks. In that case, relation (51) can be written as \(\ell =(|m|+\kappa )\). Thus, one can see that the quantum numbers \((m',\ell ')\) are influenced by the topological defect of cosmic string, and these are called the effective magnetic and orbital quantum numbers, respectively.

Appendix 2: The confluent Heun equation

The standard form of the confluent Heun equation is [32, 75, 76]

$$\begin{aligned} H''(x)+\Big [\zeta +\frac{\beta +1}{x}+\frac{\gamma +1}{x-1}\Big ]\,H'(x)+\Big [\frac{\mu }{x}+\frac{\nu }{x-1} \Big ]\,H(x)=0, \end{aligned}$$
(52)

where \(H(x)=H_{c}(\zeta , \beta , \gamma , \delta , \eta ;x)\) is the confluent Heun function. The parameters \(\mu \) and \(\nu \) given in the last term of Eq. (52) are defined as

$$\begin{aligned} \mu =\frac{1}{2}\,(\zeta +\zeta \,\beta -\beta -\beta \,\gamma -\gamma )-\eta ,\quad \nu =\frac{1}{2}\,(\zeta +\zeta \,\gamma +\beta +\beta \,\gamma +\gamma )+\delta +\eta , \end{aligned}$$
(53)

By using the Frobenius method [77], one will obtain a polynomial solution to the confluent Heun equation. Let us write the confluent Heun function as a power series around the origin,

$$\begin{aligned} H(x)=\sum ^{\infty }_{i=0}\,d_{i}\,x^{i}, \end{aligned}$$
(54)

where \(d_i\) are the coefficients.

Thereby, substituting this power series in the Eq. (B.1), one will obtain the coefficient

$$\begin{aligned} d_1=-\frac{\mu }{\beta +1}\,d_0, \end{aligned}$$
(55)

with the following recurrence relation

$$\begin{aligned} d_{k+2}=\frac{1}{(k+2)(k+2+\beta )}\Bigg [\Big \{(k+1)(k+2+\beta +\gamma -\zeta )-\mu \Big \}\,d_{k+1}+(\zeta \,k+\mu +\nu )\,d_{k}\Bigg ] \end{aligned}$$
(56)

Therefore, from the Eq. (B.5), the confluent Heun series becomes a polynomial of degree n when we impose two conditions:

$$\begin{aligned} d_{n+1}=0,\quad \delta =-\zeta \,\Big [n+\frac{1}{2}\,(2+\beta +\gamma ) \Big ], \end{aligned}$$
(57)

where \(n=1,2,3,\ldots ..\) But, we don’t know whether a closed expression for the energy eigenvalue will exists or not.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Morris–Thorne-type wormhole with a cosmic string effects on harmonic oscillator problem. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03118-2

Keywords

Navigation