Skip to main content
Log in

Quantum correlation of the Heisenberg xxz Hamiltonian with nonuniform external magnetic field and Dzyaloshinskii–Moriya interaction

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the thermal entanglement and geometric quantum discord in Heisenberg XXZ Hamiltonian with nonuniform magnetic field and Dzyaloshinskii–Moriya (DM) interaction. Here, we consider primarily the effect of different factors such as nonuniform magnetic field, exchange interaction \(J\), Dzyaloshinskii–Moriya interaction \(D\) on the thermal entanglement and the geometric quantum discord for the antiferromagnetic in Heisenberg qubit system. The results indicate that strong DM interaction plays the essential role in the conservation of quantum correlation. For any \(J,\,\,D\) and \(T\) quantum correlation indicates the exact symmetry about the inversion of nonuniform part of magnetic field. Also, these results indicate robustness of the thermal entanglement and the geometric quantum discord against the increasing \(J\) and \(D\). On the other hand, the geometric quantum discord is more robust for temperature than thermal entanglement. Thus, the results indicate that Quantum correlation can be appreciably manipulated according to the exchange interaction and DM interaction, uniform part and nonuniform part of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper.

References

  1. A Khalique and B C Sanders Phys. Rev. A 90 032304 (2014)

    Article  ADS  Google Scholar 

  2. C H Liao and C W Yang Quantum Inf. Process. 13 1907 (2014)

    Article  ADS  Google Scholar 

  3. H K Lo, M Curty and K Tamaki Nat. Photonics 8 595 (2014)

    Article  ADS  Google Scholar 

  4. T T Hu, K Xue and C F Sun Quantum Inf. Process. 12 3369 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. F Benabdallah and M Daoud Eur. Phys. J. D 75 13 (2021)

    Article  ADS  Google Scholar 

  6. F Benabdallah and A Slaoui Quantum Inf. Process. 19 252 (2020)

    Article  ADS  Google Scholar 

  7. K Youssef, H Saeed and D Mohammed Quantum Inf. Process. 21 235 (2022)

    Article  Google Scholar 

  8. M Hashem, A B A Mohamed, S Haddadi, Y Khedif, M R Pourkarimi and M Daoud Appl. Phys. B 128 87 (2022)

    Article  ADS  Google Scholar 

  9. H Saeed and P M Reza Eur. Phys. J. Plus 137 66 (2022)

    Google Scholar 

  10. Y Khedif, S Haddadi, M R Pourkarimi and M Daoud Mod. Phys. Lett. A 36 2150209 (2021)

    Article  ADS  Google Scholar 

  11. S-B Ri, W-G Kim, R-J Choe and H Kim Int. J. Theor. Phys. 62 118 (2023)

    Article  Google Scholar 

  12. M Curty, O Gühne, M Lewenstein and N Lütkenhaus Phys. Rev. A 71 022306 (2005)

    Article  ADS  Google Scholar 

  13. N P De Leon, K M Itoh, D Kim, K K Mehta, T E Northup, H Paik and D W Steuerman Science 372 eabb2823 (2021)

    Article  ADS  PubMed  Google Scholar 

  14. S E Crawford, R A Shugayev, H P Paudel, P Lu, M Syamlal, P R Ohodnicki and Y Duan Adv. Quantum Technol. 4 2100049 (2021)

    Article  Google Scholar 

  15. X G Wang Phys. Lett. A 329 439 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Z Sun, X G Wang and A Z Hu Commun. Theor. Phys. 43 1033 (2005)

    Article  ADS  Google Scholar 

  17. L Zhou, H S Song and Y Q Guo Phys. Rev. A 68 024301 (2003)

    Article  ADS  Google Scholar 

  18. J D Shi, W C Ma, X K Song, D Wang and L Ye Phys. A 442 373 (2016)

    Article  MathSciNet  Google Scholar 

  19. Y Sun, Y Chen and H Chen Phys. Rev. A 68 044301 (2003)

    Article  ADS  Google Scholar 

  20. X Q Xi, W X Chen and S R Hao Phys. Lett. A 300 567 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. W D Li, S J Wen and Y H Ji Optik 125 6500 (2014)

    Article  ADS  Google Scholar 

  22. J Q Cheng, W Wu and J B Xu Quantum Inf. Process. 16 211 (2017)

    Article  ADS  Google Scholar 

  23. H H Situ and C Zhang Theor. Phys. 56 2178 (2017)

    Article  Google Scholar 

  24. Y Khedif and M Daoud Mod. Phys. Lett. A 36 2150074 (2021)

    Article  ADS  Google Scholar 

  25. Y Khedif, A Errehymy and M Daoud Eur. Phys. J. Plus 136 336 (2021)

    Article  Google Scholar 

  26. M A Yurischev Quantum Inf. Process 19 336 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. A El Aroui, Y Khedif and N Habiballah Opt. Quantum Electron. 54 694 (2022)

    Article  Google Scholar 

  28. Y Khedif, A Errehymy and M Daoud Mod. Phys. Lett. A 37 2250147 (2022)

    Article  ADS  Google Scholar 

  29. A B A Mohamed, A N Khedr, S Haddadi, A Ur Rahman, M Tammam and M R Pourkarimi Res. Phys. 39 105693 (2022)

    Google Scholar 

  30. Y Khedif and R Muthuganesan Appl. Phys. B 129 19 (2022)

    Article  ADS  Google Scholar 

  31. F M Aldosari, A M Alsahli, A B Mohamed and A Rahman Ann. Phys. 535 2300094 (2023)

    Article  Google Scholar 

  32. A B A Mohamed, A Rahaman, S M Younis and N Zidan Opt. Quantum Electron. 55 611 (2023)

    Article  Google Scholar 

  33. A B A Mohamed, A Rahaman, F M Aldosari and H Eleuch Phys. Scr. 98 065110 (2023)

    Article  ADS  Google Scholar 

  34. W K Wootters Phys. Rev. Lett. 80 2245 (1998)

    Article  ADS  Google Scholar 

  35. A U Rahman, H Ali, S M Zangi and C F Qiao Sci. Rep. 13 16654 (2023)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. W Heisenberg,Quantum theory of fields and elementary particles Scientific Review Papers, Talks, and Books Wissenschaftliche Übersichtsartikel, Vorträge und Bücher p 552 (1984)

  37. F Palacio Molecular Magnetism: From Molecular Assemblies to the Devices, (Dordrecht: Springer) p 5 (1996)

    Book  Google Scholar 

  38. J S Zhang and A X Chen Quant. Phys. Lett. 1 69 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Academy of Sciences, DPR of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Bok Ri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, SB. Quantum correlation of the Heisenberg xxz Hamiltonian with nonuniform external magnetic field and Dzyaloshinskii–Moriya interaction. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03114-6

Keywords

Navigation