Skip to main content
Log in

Structural and electrical investigation of rare-earth doped lead-free SrBi4Ti4O15 ceramics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Lead-free ferroelectric ceramics Sr(1−2x)NaxNdxBi4Ti4O15 are synthesized by solid state method using high energy ball milling. X-Ray diffraction and X-Ray Photoelectron Spectroscopy studies confirmed the formation of single phase SBT ceramics without any major structural distortion due to Nd doping. The electrical properties have been found to be strongly dependent on the dopant concentration. A monotonic increase in transition temperature was observed from 568 to 622 °C. The dielectric constant as well as dielectric loss values got decreased after Nd doping which are correlated with origin of ferroelectric microdomains during the synthesis procedure. Using impedance spectra analysis and fitting the data into equivalent circuit, the grain and grain boundary effect has been explored. Enhancement in piezoelectric properties has been observed in the modified systems. 2Pr value has reached to a maximum of 9.2 μC/cm2 for sample with x = 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W Gao, Y Zhu, Y Wang and G Yuan J. Mater. 6 1 (2020)

    Google Scholar 

  2. T Mikolajick et al. J. Appl. Phys. 129 100901 (2021)

    Article  ADS  Google Scholar 

  3. Y-M You et al. Science. 357 306 (2017)

    Article  ADS  PubMed  Google Scholar 

  4. L W Martin and A M Rappe Nat. Rev. Mater. 2 1 (2016)

    Article  Google Scholar 

  5. T Eshita et al. Jpn. J. Appl. Phys. 57 11UA01 (2018)

    Article  Google Scholar 

  6. Z Li et al. Funct. Mater. 31 2005012 (2021)

    Article  Google Scholar 

  7. S S Barala, B Roul, N Banerjee and M LKumar J. Appl. Phys. 120 115305 (2016)

    Article  ADS  Google Scholar 

  8. S Tong, B Ma, M Narayanan, S Liu, R Koritala, U Balachandran and D Shi Mater. Interfaces 5 1474 (2013)

    Article  Google Scholar 

  9. L Song, S Glinsek and E Defay Appl. Phys. Rev. 8 041315 (2021)

    Article  ADS  Google Scholar 

  10. V V Shvartsman and D C Lupascu J. Am. Ceram. Soc. 95 1 (2012)

    Article  Google Scholar 

  11. P K Panda and B Sahoo Ferroelectrics 474 128 (2015)

    Article  ADS  Google Scholar 

  12. T Shao, H Du, H Ma, S Qu, J Wang, J Wang and X Wei J. Mater. Chem. A 5 554 (2017)

    Article  Google Scholar 

  13. H Zhang et al. J. Mater. Chem. C 8 16648 (2020)

    Article  Google Scholar 

  14. T Takenaka, T Gotoh, S Mutoh and T Sasaki J. Appl. Phys. 34 5384 (1995)

    Article  Google Scholar 

  15. J H Lee, R H Shin and W Jo Phys. Rev. B 84 94112 (2011)

    Article  ADS  Google Scholar 

  16. F Zhang and Y Li Wuji Cailiao Xuebao/J. Inorg. Mater. 29 449 (2014)

    MathSciNet  Google Scholar 

  17. J-M Yan et al. J. Mater. Chem. C 9 3287 (2021)

    Article  Google Scholar 

  18. C-C Zhang et al. Cream. Int. 43 13963 (2017)

    Article  Google Scholar 

  19. G Rajashekhar, T Sreekanth, N Tripathy and P Sarah Mater. Today Proc. 92 667–670 (2023). https://www.sciencedirect.com/science/article/abs/pii/S2214785323020473

  20. P Nayak, T Badapanda, R Pattanayak, A Mishra, S Anwar, P Sahoo and S Panigrahi Metall. Mater. Trans. A 45 2132 (2014)

    Article  Google Scholar 

  21. T Wei, F Yang, Q Jing, C Zhao, M Wang, M Du, Y Guo, Q Zhou and Z Li J. Alloys Compd. 801 1 (2019)

    Article  Google Scholar 

  22. Q Wang, Z-P Cao, C-M Wang, Q-W Fu, D-F Yin and H-H Yin J. Alloys Compd. 674 37 (2016)

    Article  Google Scholar 

  23. H Du, C Ma, W Ma and H Wang Process. Appl. Ceram. 12 303 (2018)

    Article  Google Scholar 

  24. K R Whittle, N C Hyatt and I M Reaney Chem. Mater. 20 6427 (2008)

    Article  Google Scholar 

  25. F Yang, H Zhang, L Li, I M Reaney and D C Sinclair Chem. Mater. 28 5269 (2016)

    Article  Google Scholar 

  26. W Wang, S-P Gu, X-Y Mao and X-B Chen J. Appl. Phys. 102 24102 (2007)

    Article  Google Scholar 

  27. L Cui and Y J Hu Phys. B Condens. Matter 404 150 (2009)

    Article  ADS  Google Scholar 

  28. G Rajashekhar, T Sreekanth, U Ravikiran and P Sarah Mater. Today Proc. 33 5467 (2020)

    Article  Google Scholar 

  29. U Ravikiran, E Zacharias, G Rajashekhar and P Sarah Ceram. Int. 45 15188 (2019)

    Article  Google Scholar 

  30. A Tawfik, O M Hemeda, A M A Henaish and A M Dorgham Mater. Chem. Phys. 211 1 (2018)

    Article  Google Scholar 

  31. W Kang, Z Zheng, Y Li and R Zhao Ceram. Int. 46 24091 (2020)

    Article  Google Scholar 

  32. Z-P Cao et al. Ceram. Int. 41 13974 (2015)

    Article  Google Scholar 

  33. D Wang, A Khesro, S Murakami, A Feteira, Q Zhao and I M Reaney J. Eur. Ceram. Soc. 37 1857 (2017)

    Article  Google Scholar 

  34. B Weng, X Zhang, N Zhang, Z-R Tang and Y-J Xu Langmuir 31 4314 (2015)

    Article  PubMed  Google Scholar 

  35. N Kitchamsetti, R S Kalubarme, P R Chikate, C-J Park, Y-R Ma, P M Shirage and R S Devan ChemistrySelect 4 6620 (2019)

    Article  Google Scholar 

  36. Z Lv, J Zhang, W Niu, M Zhang, L Song, H Zhu and X Wang Chin. Phys. B 25 097502 (2016)

    Article  ADS  Google Scholar 

  37. M Kalapsazova, R Stoyanova, E Zhecheva, G Tyuliev and D Nihtianova J. Mater. Chem. A 2 19383 (2014)

    Article  Google Scholar 

  38. A J Bell, P M Shepley and Y Li Acta Mater. 195 292 (2020)

    Article  ADS  Google Scholar 

  39. P Nayak, T Badapanda and S Panigrahi Mater. Lett. 172 32 (2016)

    Article  Google Scholar 

  40. X Liu, R Rao, J Shi, J He, Y Zhao, J Liu and H Du J. Alloys Compd. 875 159999 (2021)

    Article  Google Scholar 

  41. S K Rout, A Hussian, I W Kim and S I Woo J. Alloys Compd. 477 706 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Hari Sankar Mohanty, GIET University for impedance measurements and Dr. M. Buchi Suresh, Scientist-E, ARCI, Hyderbad for dielectric measurements, Dr. Nilakantha Tripathy, Model Degree College, Nabarangpur and Dr. P. Sarah, VJIT, Hyderabad for their valuable discussion and suggestion in preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajashekhar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajashekhar, G., Sreekanth, T. Structural and electrical investigation of rare-earth doped lead-free SrBi4Ti4O15 ceramics. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03099-2

Keywords

Navigation