Skip to main content
Log in

Structural, vibrational and magneto-electronic investigation of ruthenium based half heusler alloys: quantum-computational analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this manuscript, the first theoretical study of half Heusler compounds RuCrZ (Z = Si, Ge) has been carried out in the context of Density Functional Theory (DFT). The structural, elastic-o-mechanical, electronic, vibrational and magnetic properties of half heusler alloy RuCrZ (Z = Si, Ge) were explored by WIEN2K Code. The energy of ground state and lattice constants were obtained using the optimization curves for both compounds. The elastic and mechanical properties confirmed that RuCrZ (Z = Si, Ge) were elastically stable as well as ductile. The energy band gap result shows there is no band gap for spin up channel that depicts the full metallic nature for RuCrGe while for spin down channel RuCrSi has largest band gap of 0.4 eV that corresponds to its polar nature as compared to the other alloys. The computed values of the lattice constant, as well as the other calculated physical characteristics, were quite close to the experimental values. In phonon dispersion curves optical branches are less coupled in RuCrGe while this effect is not at all observed in RuCrSi while magnetic moments of these materials are comparable to about 1μB, i.e., MTot ≈ 1 μB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All used data are embedded in this manuscript and properly referenced where applicable.

References

  1. K Manna, Y Sun, L Muechler, J Kubler and C Felser Nat. Rev. Mater. 3 244 (2018)

    Article  CAS  Google Scholar 

  2. T Graff, S S P Parkin and C Felser IEEE Trans. Magn. 47 367 (2011)

    Article  Google Scholar 

  3. F Casper, T Graf, S Chadov, B Balke and C Felser Semicond. Sci. Technol. 27 063001 (2012)

    Article  Google Scholar 

  4. T Akhter, H M Khan, S Honey et al Ceramics Int. 48 33177 (2022)

    Article  CAS  Google Scholar 

  5. J Winterlik et al Adv. Mater. 24 6283 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M Moradi, N Taheri and M Rostami Phys. Lett. A 382 3004 (2018)

    Article  CAS  Google Scholar 

  7. N Ahmad Mala, M A Dar, M D Rather, B A Reshi, S Sivakumar, K M Batoo and Z Ahmad J. Mater. Sci. Mater. Electron. Vol. 34, 505 (2023)

  8. X Wang, Z Cheng and G Liu Materials 10 107 (2017)

    Article  Google Scholar 

  9. N Mehmood, R Ahmad and G Murtaza J. Supercond. Nov. Magnetism 30 2481 (2017)

    Article  CAS  Google Scholar 

  10. M Shahzad, R Ali, M Khan et al Optical Materials 144 114288 (2023)

    Article  CAS  Google Scholar 

  11. L Damewood et al Phys. Rev. B 91 064409 (2015)

    Article  Google Scholar 

  12. S Gul, Z Ahmad, M Asma et al Chemosphere 307 135633 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. R Ahmad, et al., J. Supercond. Nov. Magnetism 1 (2018)

  14. R Meenakshib et. al, Phase Trans. 415 (2021)

  15. M A Bennani, Z Aziz, S Terkhi, E H Elandaloussi, B Bouadjemi, D Chenine, M Benidris, O Youb and S Bentata J. Superconduct. Novel Magnet. 34 211 (2021)

    Article  CAS  Google Scholar 

  16. L Mohan, S Sukhender, S Kumar, S R Bhardwaj, East Eur. J. Phys. 4 (2020)

  17. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka, and J Luitz, WIEN2K, An Augmented- Plane- Wave+Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn., Wien, Austria (2001)

  18. N Erum, M A Iqbal and S S Iqbal Physica Scripta 96 115702 (2021)

    Article  Google Scholar 

  19. C Tang, Y Zhang and J Dai Solid State Commun. 133 219 (2005)

    Article  CAS  Google Scholar 

  20. J P Perdew et al Phys. Rev. B 46 6671 (1992)

    Article  CAS  Google Scholar 

  21. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. U V Barth and L Hedin J. Phys. C Solid State Phys. 5 1629 (1972)

    Article  Google Scholar 

  23. Y O Ciftci and M Evecen Phase Trans. 91 1206 (2018)

    Article  CAS  Google Scholar 

  24. J Wei and G Wang J. Alloy Compd. 757 118 (2018)

    Article  CAS  Google Scholar 

  25. C S Gohar et al Omega 8 17779 (2023)

    Article  Google Scholar 

  26. M Husain, N Rahman, M Amami et al Opt Quant Electron 55 536 (2023)

    Article  CAS  Google Scholar 

  27. N Rahman et al Phys. Scr. 98 065929 (2023)

    Article  Google Scholar 

  28. S F Pugh Philos. Mag. 45 823 (1954)

    Article  CAS  Google Scholar 

  29. N Erum, J Ahmad and M A Iqbal Electronics. 55 337 (2023)

    CAS  Google Scholar 

  30. Y Pan, D Pu and G Liu Vacuum 175 109291 (2020)

    Article  CAS  Google Scholar 

  31. Y Pan, E Yu, D Wang and H Deng J. Alloys Compd. 858 157662 (2021)

    Article  CAS  Google Scholar 

  32. M A Yatoo, F Habib, A H Malik, M J Qazi, S Ahmad, M A Ganayee and Z Ahmad MRS Commun. 13 378 (2023)

    Article  CAS  Google Scholar 

  33. Y Pan, Y Lin, G Liu and J Zhang Vacuum. 174 109203 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the researchers supporting Project number (RSP2023R374), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

NE plan design and take DFT results from software, article write up, solve result analysis, verification. ZA contributed to verification, resources, validation, proofread. MKO contributed to review and editing.

Corresponding authors

Correspondence to Nazia Erum or Zubair Ahmad.

Ethics declarations

Conflict of interest

We confirm that this work is original and has not been published elsewhere nor is it currently under consideration for publication elsewhere and has no conflict of interest.

Ethical approval

We confirm that this work is original and has not been published elsewhere nor is it currently under consideration for publication elsewhere and has ethical issues and no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erum, N., Ahmad, Z. & Okla, M.K. Structural, vibrational and magneto-electronic investigation of ruthenium based half heusler alloys: quantum-computational analysis. Indian J Phys 98, 975–984 (2024). https://doi.org/10.1007/s12648-023-02994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02994-4

Keywords

Navigation