Skip to main content
Log in

Coupled vector gauge fields in teleparallel scalar-kinetic branes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate scalar-kinetic branes in the modified teleparallel f(T) gravity. These branes are constructed by gravity that is coupled to a real scalar field with non-standard kinetic terms, which have a form of \(P(X,\phi )=X\phi ^{n}\). The effects of space–time torsion on thick brane solutions are studied that cause the brane splitting. Also, we consider the localization of five-dimensional (5D) vector gauge fields on thick branes. By using non-minimal coupling functions in the vector gauge field action, it is shown that massless zero modes of gauge fields can be localized on scalar-kinetic branes in the f(T) gravity theory. Furthermore, properties of the analogous quantum-potential and non-normalized massive modes are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V A Rubakov and M E Shaposhnikov Phys. Lett. B 125 139 (1983)

    ADS  Google Scholar 

  2. R Linares, H A Morales-T’ecotl and O Pedraza Phys. Rev. D 81 126013 (2010)

    ADS  Google Scholar 

  3. M N Smolyakov and I P Volobuev J. Exp. Theor. Phys. 108 597 (2009)

    ADS  Google Scholar 

  4. L Randall and R Sundrum Phys. Rev. Lett. 83 3370 (1999)

    ADS  MathSciNet  Google Scholar 

  5. L Randall and R Sundrum Phys. Rev. Lett. 83 4690 (1999)

    ADS  MathSciNet  Google Scholar 

  6. N Arkani-Hamed, S Dimopoulos and G Dvali Phys. Lett. B 429 263 (1998)

    ADS  Google Scholar 

  7. A Kehagias and K Tamvakis Phys. Lett. B 504 38 (2001)

    ADS  MathSciNet  Google Scholar 

  8. H Guo, Y-X Liu, Z-H Zhao and F-W Chen Phys. Rev. D 85 124033 (2012)

    ADS  Google Scholar 

  9. A Z Wang Phys. Rev. D 66 024024 (2002)

    ADS  MathSciNet  Google Scholar 

  10. M Minamitsuji, W Naylor and M Sasaki Nucl. Phys. B 737 121 (2006)

    ADS  Google Scholar 

  11. I Olasagasti and K Tamvakis Phys. Rev. D 68 064016 (2003)

    ADS  MathSciNet  Google Scholar 

  12. A Kehagias and K Tamvakis Phys. Lett. B 504 38 (2001)

    ADS  MathSciNet  Google Scholar 

  13. C Adam, N Grandi, J Sanchez-Guillen and A Wereszczynski J. Phys. A Math. Theor. 41 212004 (2008)

    ADS  Google Scholar 

  14. D Bazeia, A R Gomes, L Losano and R Menezes Phys. Lett. B 671 402 (2009)

    ADS  MathSciNet  Google Scholar 

  15. C Adam, J Sanchez-Guillen and A Wereszczynski J. Phys. A40 13625 (2007); Erratum-ibid. A 42 089801 (2009)

  16. E Babichev Phys. Rev. D 77 065021 (2008)

    ADS  Google Scholar 

  17. A R Brown, S Sarangi, B Shlaer and A Weltman Phys. Rev. Lett 99 161601 (2007)

    ADS  Google Scholar 

  18. J Garriga and V F Mukhanov Phys. Lett. B 458 219 (1999)

    ADS  MathSciNet  Google Scholar 

  19. C Armendariz-Picon, T Damour and V F Mukhanov Phys. Lett. B 458 209 (1999)

    ADS  MathSciNet  Google Scholar 

  20. C Armendariz-Picon and E A Lim J. Cosmol. Astropart. Phys. 08 007 (2005)

    ADS  Google Scholar 

  21. Y-X Liu, Y Zhong and K Yang Europhys. Lett. 90 51001 (2010)

    ADS  Google Scholar 

  22. L B Castro and L A Meza Europhys. Lett. 102 21001 (2013)

    ADS  Google Scholar 

  23. E Mazani, A Tofighi and M M Sorkhi Eur. Phys. J. C 80 3 267 (2020)

    ADS  Google Scholar 

  24. H A Buchdahl Mon. Not. R. Astron. Soc. 150 1 (1970)

    ADS  Google Scholar 

  25. J D Barrow and S Cotsakis Phys. Lett. B 214 515 (1988)

    ADS  MathSciNet  Google Scholar 

  26. J H da Silva and M Dias Phys. Rev. D 84 066011 (2011)

    ADS  Google Scholar 

  27. T Carames, M Guimaraes and J H da Silva Phys. Rev. D 87 106011 (2013)

    ADS  Google Scholar 

  28. V I Afonso, D Bazeia, R Menezes and A Yu Petrov Phys. Lett. B 658 71 (2007)

    ADS  MathSciNet  Google Scholar 

  29. D Bazeia, A Lobão, L Losano, R Menezes and G J Olmo Phys. Rev. D 91 124006 (2015)

    ADS  MathSciNet  Google Scholar 

  30. Y Zhong and Y-X Liu Eur. Phys. J. C 76 321 (2016)

    ADS  Google Scholar 

  31. K Hayashi and T Shirafuji Phys. Rev. D 19 3524 (1979)

    ADS  MathSciNet  Google Scholar 

  32. R Aldrovandi and J G Pereira Teleparallel Gravity: An Introduction (Berlin: Springer) (2013)

    Google Scholar 

  33. G R Bengochea and R Ferraro Phys. Rev. D 79 124019 (2009)

    ADS  Google Scholar 

  34. A Behboodi, A Akhshabi and K Nozari Phys. Lett. B 740 291 (2015)

    ADS  MathSciNet  Google Scholar 

  35. J Yang, Y L Li, Y Zhong and Y Li Phys. Rev. D 85 084033 (2012)

    ADS  Google Scholar 

  36. R Menezes Phys. Rev. D 89 125007 (2014)

    ADS  Google Scholar 

  37. J Wang, W-D Guo, Z-C Lin and Y-X Liu Phys. Rev. D 98 084046 (2018)

    ADS  MathSciNet  Google Scholar 

  38. Q Tan, W-D Guo, Y-P Zhang and Y-X Liu Eur. Phys. J. C 81 373 (2021)

    ADS  Google Scholar 

  39. S Davood Sadatian and S M Hosseini Adv. High Energy Phys. 2018 2164764 (2018)

    Google Scholar 

  40. R A C Correa and P H R S Moraes Eur. Phys. J. C 76 100 (2016)

    ADS  Google Scholar 

  41. W-D Guo, Y Zhong, K Yang, T-T Sui and Y-X Liu Phys. Lett. B 800 135099 (2020)

    MathSciNet  Google Scholar 

  42. A R P Moreira, J E G Silva, D F S Veras and C A S Almeida Int. J. Mod. Phys. D 30 2150047 (2021)

    ADS  Google Scholar 

  43. B Bajc and G Gabadadze Phys. Lett. B 474 282 (2000)

    ADS  MathSciNet  Google Scholar 

  44. J Liang and Y-S Duan Phys. Lett. B 678 491 (2009)

    ADS  MathSciNet  Google Scholar 

  45. H Guo, Y-X Liu, S-W Wei and C-E Fu Europhys. Lett. 97 60003 (2012)

    ADS  Google Scholar 

  46. A Díaz-Furlong, A Herrera-Aguilar, R Linares, R R Mora-Luna and H A Morales-Tecotl Gen. Relativ. Gravit. 46 1815 (2014)

    ADS  Google Scholar 

  47. A Tofighi and M Moazzen Acta Phys. Polon. B 45 1797 (2014)

    ADS  MathSciNet  Google Scholar 

  48. M Moazzen and Z ghalenovi Ann. Phys. 385 70 (2017)

    ADS  Google Scholar 

  49. Y-X Liu, Z-G Xu, F-W Chen and S-W Wei Phys. Rev. D 89 086001 (2014)

    ADS  Google Scholar 

  50. A Tofighi and M Moazzen Int. J. Theor. Phys. 50 1709 (2011)

    Google Scholar 

  51. M Moazzen Sorkhi and Z ghalenovi Acta Phys. Polon. B 49 123 (2018)

    ADS  MathSciNet  Google Scholar 

  52. H Guo, Q-Y Xie and C -E Fu Phys. Rev. D 92 106007 (2015)

    ADS  Google Scholar 

  53. M Moazzen Sorkhi and E Mazani Mod. Phys. Lett. A 33 40 1850235 (2018)

    ADS  Google Scholar 

  54. M Moazzen Int. J. Mod. Phys. A 32 1750058 (2017)

    ADS  Google Scholar 

  55. W T Cruz, M O Tahim and C A S Almeida Phys. Lett. B 686 259 (2010)

    ADS  Google Scholar 

  56. W T Cruz, M O Tahim and C A S Almeida Europhys. Lett. 88 41001 (2009)

    ADS  Google Scholar 

  57. A E R Chumbes, J M H da Silva and M B Hott Phys. Rev. D 85 085003 (2012)

    ADS  Google Scholar 

  58. Y X Liu, X N Zhou, K Yang and F W Chen Phys. Rev. D 86 064012 (2012)

    ADS  Google Scholar 

  59. M Moazzen Sorkhi and Z Ghalenovi Int. J. Mod. Phys. A 33 1850172 (2018)

    Google Scholar 

  60. M Moazzen Sorkhi and Z Ghalenovi Eur. Phys. J. C 80 314 (2020)

    ADS  Google Scholar 

  61. K Yanga, W-D Guob, Z-C Lin and Y-X Liu Phys. Lett. B 782 170 (2018)

    ADS  Google Scholar 

  62. A R P Moreira, J E G Silva and C A S Almeida Ann. Phys. 442 168912 (2022)

    Google Scholar 

  63. B-M Gu, Y-P Zhang, H Yu and Y -X Liu Eur. Phys. J. C 77 115 (2017)

    ADS  Google Scholar 

  64. L-L Wang, H Guo, C-E Fu and Q-Y Xie Phys. Rev. D 107 104017 (2023)

    ADS  Google Scholar 

  65. A R P Moreira, F M Belchior, R V Maluf and C A S Almeidad Eur. Phys. J. C 83 48 (2023)

    ADS  Google Scholar 

  66. Ch Yang, Z-Q Chen and L Zhao Commun. Theor. Phys. 72 075801 (2020)

    ADS  Google Scholar 

  67. V Dzhunushaliev, V Folomeev and M Minamitsuji Rep. Prog. Phys. 73 066901 (2010)

    ADS  Google Scholar 

  68. J E G Silva and C A S Almeida Phys. Rev. D 84 085027 (2011)

    ADS  Google Scholar 

  69. W-D Guo, Q-M Fu, Y-P Zhang and Y-X Liu Phys. Rev. D 93 044002 (2016)

    ADS  MathSciNet  Google Scholar 

  70. C A Vaquera-Araujo and O Corradini Eur. Phys. J. C 75 48 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

The research of the corresponding author was in part supported by a grant from Kosar University of Bojnord (No. 9902091320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moazzen Sorkhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazzen Sorkhi, M., Ghalenovi, Z. & Moeen Moghaddas, M. Coupled vector gauge fields in teleparallel scalar-kinetic branes. Indian J Phys 98, 2229–2241 (2024). https://doi.org/10.1007/s12648-023-02983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02983-7

Keywords

Navigation