Skip to main content
Log in

Resonant second-harmonic generation in an array of magnetized anharmonic carbon nanotubes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An analytical model of second-harmonic generation (SHG) from amplitude-modulated laser-irradiated carbon nanotubes (CNTs) implanted in silica substrate is presented. In the interaction of an intense amplitude-modulated laser with an array of magnetized anharmonic CNTs, a force is exerted on the electrons of CNTs due to the electric field of the laser. The exerted force causes the displacement of the electrons which is of the order of the radius of CNTs due to their nanoscale dimensions. In turn, the restoring force of the electrons becomes a nonlinear function of the displacement and results in anharmonicity. The CNTs are magnetized by applying the magnetic field perpendicularly to the beam propagation direction. The anharmonicity in CNTs broadens the plasmon resonance. The effects of the amplitude-modulated parameter and CNTs parameters on the amplitude of the second harmonic are analyzed. The magnetic field also helps to enhance the power of generated second harmonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available inside the paper.

References

  1. N Pathak and P C Agarwal Plasma Phys 61 1 (2021)

    Google Scholar 

  2. P Jatav and J Parashar Phys. Plasmas 26 022301 (2019)

    Article  ADS  Google Scholar 

  3. Li Hong Phys Rev. A 98 023820 (2018)

    Article  ADS  CAS  Google Scholar 

  4. P Aashna, K Thyagarajan and J Opt J Opt Soc Am B 35 1609 (2018)

    Article  ADS  CAS  Google Scholar 

  5. V A Margulis, E A Gaiduk and E N Zhidkin Opt Commun 183 317 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Laser-matter interaction for radiation and energy H K Malik 1st Ed., (CRC Press) (2021)

  7. M Abedi-Varaki and S Jafari Eur. Phys. J. Plus 133 137 (2018)

    Article  Google Scholar 

  8. J Chen and C-L Hu Acc. Chem. Res. 54 2775 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. T Liu, S Xiao, B Li and M Gu Front. Nanotechnol. 4 1 (2022)

    CAS  Google Scholar 

  10. Physical Properties of Carbon Nanotubes R Saito, G Dresselhaus, M S Dresselhaus, Imperial College Press (London: UK) (1998)

  11. X Zhang Adv. Mater. 19 4198 (2007)

    Article  CAS  Google Scholar 

  12. D A Akimov, M V Alfimov, S O Konorov et al J. Exp. Theor. Phys 98 220 (2004)

    Article  ADS  CAS  Google Scholar 

  13. C J Zhang Phys. Lett. 433 101 (2006)

    CAS  Google Scholar 

  14. G Y Slepyan, S A Maksimenko, V P Kalosha and J Hermann Phys Rev. A 60 777 (1999)

    Article  ADS  Google Scholar 

  15. G Y Slepyan, S A Maksimenko and V P Kalosha Phys Rev. A 63 053808 (2001)

    Article  ADS  Google Scholar 

  16. C Stanciu, R Ehlich, V Petrov et al Appl. Phys. Lett. 81 4064 (2002)

    Article  ADS  CAS  Google Scholar 

  17. H Khosravi, A Bahari and N Daneshfar Phys Scr 77 055702 (2008)

    Article  ADS  Google Scholar 

  18. S Kumar, S Vij, N Kant and V Thakur Plasmonics 17 381 (2021)

    Article  Google Scholar 

  19. S Kumar and S Vij Opt. Commun. 513 128112 (2022)

    Article  CAS  Google Scholar 

  20. S Kumar and S Vij J. Phys. 78 45 (2022)

    Google Scholar 

  21. M J Huttunen, O Herranen, A Johansson et al New J. Phys. 15 083043 (2013)

    Article  ADS  CAS  Google Scholar 

  22. L De Dominicis, S Botti, L S Asilyan, R Ciardi, R Fantoni, M L Terranova and A Fiori Phys. Lett. 85 1418 (2004)

    Google Scholar 

  23. S O Konorov et al. J. Raman Spectrosc. 34 1018 (2003)

    Article  ADS  CAS  Google Scholar 

  24. T Punia Plasma Sci. 50 1087 (2022)

    Article  CAS  Google Scholar 

  25. H K Malik, T Punia and D Sharma Electronics 10 3134 (2021)

    Article  Google Scholar 

  26. H M Su, J T Ye, Z K Tang and K S Wong Phys. Rev. B 77 (2008)

  27. TG Pedersen, A-P Jauho and K Pedersen Phys. Rev. B 79 (2009)

  28. V Thakur J. Phys. 71 660 (2021)

    CAS  Google Scholar 

  29. M Singh, DN Gupta, and H Suk, Phys. Plasmas 22 (2015)

  30. S Vij, N Kant and V Thakur Plasmonics 14 1051 (2019)

    Article  CAS  Google Scholar 

  31. A Kumar and P Kumar Phys. Plasmas 23 103302 (2016)

    Article  ADS  Google Scholar 

  32. A M Nemilentsau, G Y Slepyan, A A Khrutchinskii and S A Maksimenko Carbon 44 2246 (2006)

    Article  CAS  Google Scholar 

  33. Y Xu and G Xiong Chem. Phys. Lett. 388 330 (2004)

    Article  ADS  CAS  Google Scholar 

  34. S Watanabe and N Minami Opt. Express. 19 1528 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. S Jain, J Parasher and R Kurchania Int Nano Lett 3 1 (2013)

    Article  Google Scholar 

  36. J Sancho-Parramon Nanotechnology 20 235706 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. L Malik and A Escarguel Europhys. Lett. 124 64002 (2019)

    Article  Google Scholar 

  38. L Malik, A Escarguel and M Kumar Laser. Phys. Lett. 18 086003 (2021)

    Article  ADS  Google Scholar 

  39. D R Smith, D G Winters and R A Bartels Proc Natl Acad Sci 110 18391 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. SV contributed to literature survey, derivation, methodology, analytical modeling, and numerical analysis; SK contributed to writing (original draft preparation); NK contributed to result discussion; VT contributed to supervision, reviewing, and editing, and VS contributed to graph plotting.

Corresponding author

Correspondence to Shivani Vij.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vij, S., Kumar, S., Thakur, V. et al. Resonant second-harmonic generation in an array of magnetized anharmonic carbon nanotubes. Indian J Phys 98, 1865–1872 (2024). https://doi.org/10.1007/s12648-023-02958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02958-8

Keywords

Navigation