Skip to main content
Log in

Analysis of the unsteady upper-convected Maxwell fluid having a Cattaneo–Christov heat flux model via two-parameters Lie transformations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The study investigates the dynamics of an upper-convected Maxwell fluid flow within the framework of magnetohydrodynamics (MHD) over an stretching surface. The analysis incorporates the Cattaneo–Christov heat flux model to explore the system’s thermal behavior. The inclusion of thermal radiation, heat generation-absorption, and suction-injection effects significantly augments the thermal characteristics. Despite its linear nature, the system demonstrates a pronounced level of nonlinearity in its temporal behavior. Through the application of a two-parameter Lie method, nonlinear partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). This method amalgamates three independent variables into a single independent similarity variable, \(\xi\). Graphical representations are employed for momentum and thermal analyses, and the ODEs are numerically solved using the bvp4c function in MATLAB. The model’s validity is confirmed through tables and graphs with a consistent assessment. An increase in Hartmann number \(M_{s}\) boosts the system’s internal energy but slows down fluid velocity. The momentum Deborah number \(\beta _{1}\) escalates velocity amplitude but decreases fluid temperature over time, whereas the heat Deborah number \(\beta _{2}\) results in a decrease in fluid temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T Hayat, Z Abbas and M Sajid Phys. Lett. A 358 396 (2006)

    Article  ADS  CAS  Google Scholar 

  2. W C Tan and T Masuoka Phys. Lett. A. 360 454 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Z Abbas, Y Wang, T Hayat and M Oberlack Nonlinear Anal. Real World Appl. 11 3218 (2010)

    Article  MathSciNet  CAS  Google Scholar 

  4. T Hayat, M Awais and M Sajid Int. J. Mod. Phys. B 25 2863 (2011)

    Article  ADS  CAS  Google Scholar 

  5. M Bilal, M Sagheer and S Hussain Alex. Eng. J. 57 1917 (2018)

    Article  Google Scholar 

  6. Z Siri, N A Che Ghani and R Md Kasmani Bound. Value Probl. 2018 126 (2018)

    Article  Google Scholar 

  7. G C Papanicolaou and S P Zaoutsos Creep and fatigue in polymer matrix composites, vol 3 (Sawston: Woodhead Publishing) (2019)

    Google Scholar 

  8. H B Mallikarjuna, M C Jayaprakash and R Mishra Nonlinear Eng. 8 734 (2019)

    Article  ADS  Google Scholar 

  9. S Palani, B R Kumar and P K Kameswaran Ain Shams Eng. J. 7 399 (2016)

    Article  Google Scholar 

  10. S Mukhopadhyay and K Bhattacharyya J. Egypt. Math. Soc. 20 229 (2012)

    Article  Google Scholar 

  11. G K Ramesh, B J Gireesha, T Hayat and A Alsaedi Alex. Eng. J. 55 857 (2016)

    Article  Google Scholar 

  12. Y Bai, X Liu, Y Zhang and M Zhang J. Mol. Liq. 224 1172 (2016)

    Article  CAS  Google Scholar 

  13. A Mushtaq, M Mustafa, T Hayat and A Alsaedi PLoS ONE 13 e0192685 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  14. S Mukhopadhyay Alex. Eng. J. 52 259 (2013)

    Article  Google Scholar 

  15. G K Ramesh, B J Gireesha, T Hayat and A Alsaedi J. Nanofluids 4 1 (2015)

    Article  Google Scholar 

  16. U Farooq, D Lu, S Munir, M Ramzan, M Suleman and S Hussain Sci. Rep. 9 7312 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. A B Rosmila, R Kandasamy and I Muhaimin Appl. Math. Mech. (Engl. Ed.) 33 593 (2012)

    Article  Google Scholar 

  18. M A A Hamad M J Uddin and A I Md Ismail Nucl. Eng. Des. 242 194 (2012)

  19. K Ur Rehman, A A Malik, M Y Malik, M Tahir and I Zehra Results Phys. 8 552 (2018)

    Article  ADS  Google Scholar 

  20. M J Uddin, W A Khan and A I Md Ismail Alex. Eng. J. 55 829 (2016)

    Article  Google Scholar 

  21. M J Uddin, M M Rashidi, H H Alsulami, S Abbasbandy and N Freidoonimeh Alex. Eng. J. 55 2299 (2016)

    Article  Google Scholar 

  22. I C Christov Mech. Res. Commun. 36 481 (2009)

    Article  Google Scholar 

  23. J A Khan, M Mustafa, T Hayat and A Alsaedi PLoS ONE 8 e0137363 (2015)

    Article  Google Scholar 

  24. T Hayat, S Qayyum, M Imtiaz and A Alsaedi AIP Adv. 6 025012 (2016)

    Article  ADS  Google Scholar 

  25. A Mushtaq, S Abbasbandy, M Mustafa, T Hayat and A Alsaedi AIP Adv. 6 015208 (2016)

    Article  ADS  Google Scholar 

  26. T Salahuddin, M Y Malik, A Hussain, S Bilal and M Awais J. Magn. Magn. Mater. 401 991 (2016)

    Article  ADS  CAS  Google Scholar 

  27. K Rubab and M Mustafa PLoS ONE 11 e0153481 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  28. L Lui, L Zheng, F Liu and X Zhang Int. J. Heat Mass Transf. 103 1191 (2016)

    Article  Google Scholar 

  29. F M Abbasi and S A Shehzad J. Mol. Liq. 220 848 (2016)

    Article  CAS  Google Scholar 

  30. L Liu, L Zheng, F Liu and X Zhang Int. J. Therm. Sci. 112 142 (2017)

    Article  Google Scholar 

  31. M Mustafa, T Hayat and A Alsaedi Int. J. Heat Mass Transf. 106 142 (2017)

    Article  CAS  Google Scholar 

  32. B Mahanthesh, B J Gireesha and C S K Raju Inform. Med. Unlocked 9 26 (2017)

    Article  Google Scholar 

  33. S Ul Khan, N Ali, M Sajid and T Hayat Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89 377 (2018)

  34. M Saleem, Q A Chaudhry and O A Almatroud Chaos Solitons Fract. 148 110996 (2021)

    Article  Google Scholar 

  35. M N Tufail and M Saleem Indian J. Phys. 95 725 (2021)

    Article  ADS  CAS  Google Scholar 

  36. Z Iqbal and M Saleem. Waves Random Complex Media (2022)

  37. M N Tufail, M Saleem and Q A Chaudhry Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci 235 3199 (2021)

    Article  Google Scholar 

  38. M Saleem, M N Tufail and Q A Chaudhry Front. Heat Mass Transf. 15 (2020)

  39. M M Bhatti, A Shahid, I E Sarris and O A Bég Int. J. Mod. Phys. B. 37 2350082 (2023)

    Article  ADS  CAS  Google Scholar 

  40. M M Bhatti, S Jun, C M Khalique, A Shahid, L Fasheng and M S Mohamed Appl. Math. Comput. 421 126936 (2022)

    Google Scholar 

  41. N S Yousef, A M Megahed and E Fares Ind. J. Phys. 97 2475 (2023)

    Article  CAS  Google Scholar 

  42. P M Patil and H F Shankar Ind. J. Phys. 97 2771 (2023)

    Article  CAS  Google Scholar 

  43. J Kamalakkannan, C Dhanapal, M Kothandapani and A Magesh Ind. J. Phys. 97 2735 (2023)

    Article  CAS  Google Scholar 

  44. S Swain, S Sarkar and B Sahoo Ind. J. Phys. 97 2745 (2023)

    Article  CAS  Google Scholar 

  45. A Alizadeh-Pahlavan and K Sadeghy Commun. Nonlinear Sci. Numer. Simul. 14 1355 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. S Mukhopadhyay Z. Naturforschung A 67 641 (2012)

    Article  ADS  CAS  Google Scholar 

  47. F Tie-Gang, Z Ji and Y Shan-Shan Chin. Phys. Lett. 26 014703 (2009)

    Article  ADS  Google Scholar 

  48. A Mahdy J. Eng. Phys. Thermophys. 88 928 (2015)

    Article  CAS  Google Scholar 

  49. N Bachok, A Ishak and I Pop Int. J. Heat Mass Transf. 55 2102 (2012)

    Article  CAS  Google Scholar 

  50. A R Betman Int. Center Theor. Phys. 11 257 (1988)

    Google Scholar 

  51. D Pal and B Talukdar Commun. Nonlinear Sci. Numer. Simul. 15 2878 (2010)

    Article  ADS  Google Scholar 

  52. M J Uddin, M N Kabir and Y M Alginahi Comput. Math. Appl. 70 846 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Tufail, M.N. Analysis of the unsteady upper-convected Maxwell fluid having a Cattaneo–Christov heat flux model via two-parameters Lie transformations. Indian J Phys 98, 1783–1793 (2024). https://doi.org/10.1007/s12648-023-02929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02929-z

Keywords

Navigation