Skip to main content
Log in

Bifurcation analysis in the system with the existence of three stable limit cycles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The purpose of this manuscript is to analyze the bifurcation of  the tri-rhythmic model with three stable limit cycles under the excitation of Gaussian colored noise, which aims to reveal the extremely complex nonlinear dynamics in biology. In the deterministic bifurcation of the tri-rhythmic model with time-delay, an interesting tri-rhythmic collapse and recovery phenomenon is found. By tuning the time-delay feedback, the model also exhibits a switch between tri-rhythmic and bi-rhythmic behavior. Furthermore, the tri-rhythmic model under colored noise excitation is discussed theoretically based on the stationary probability density function obtained by the stochastic averaging method. The variation in the number of peak values of the stationary probability density function is observed, thereupon enabling the stochastic bifurcation of the tri-rhythmic oscillator. Therefore, by adjusting the time-delay feedback and colored noise, many abundant bifurcation phenomena can be acquired. The theoretical analysis is consistent with the results of the dynamic numerical simulation. Our study may provide a new perspective for further exploring the bifurcation phenomenon of the tri-rhythmic model, which has important practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A Andronov, A Vitt and S Khaikin The Theory of Oscillations (Berlin: Springer) (1966)

    Google Scholar 

  2. F Kaiser Theory of Resonant Effects of RF and MW Energy (New York: Springer) (1983)

    Book  Google Scholar 

  3. F Kaiser and C Eichwald Int. J. Bifurc. Chaos 01 485 (1991)

    Article  Google Scholar 

  4. O Decroly and A Goldbeter J. Theor. Biol. 124 219 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. T Haberichter, M Marhl and R Heinrich Biophys. Chem. 90 17 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. J Yan and A Goldbeter J. R. Soc. Interface 16 20180835 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M Laurent and N Kellershohn Trends Biochem. Sci. 24 418 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. R Thomas and M Kaufman Chaos 11 170 (2001)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  9. A Goldbeter Philos. Trans. R. Soc. A 376 20170376 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. P Ashwin and S Wieczorek R. Soc. A 370 1166 (2012)

    Google Scholar 

  11. S Djeundam, R Yamapi, T Kofane and M Aziz-Alaoui Chaos 23 033125 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. D Jost Phys. Rev. E 89 010701 (2014)

    Article  ADS  Google Scholar 

  13. H Zang, T Zhang and Y Zhang Appl. Math. Comput. 260 204 (2015)

    MathSciNet  Google Scholar 

  14. K Yuan and Z Qiu Sci. China. Phys. Mech. 53 336 (2010)

    Article  Google Scholar 

  15. R Yonkeu, R Yamapi, G Filatrella and C Tchawoua Nonlinear Dyn. 84 627 (2016)

    Article  Google Scholar 

  16. R Yonkeu, R Yamapi and G Filatrella Int. J. Non-Linear Mech. 154 104429 (2023)

    Article  ADS  Google Scholar 

  17. R Yonkeu and A David Chaos Solitons Fractals 165 112753 (2022)

    Article  Google Scholar 

  18. R Yonkeu, R Yamapi, G Filatrella and J Kurths Eur. Phys. J. B 93 1 (2020)

    Article  Google Scholar 

  19. R Yonkeu, R Yamapi, G Filatrella and C Tchawoua Commun. Nonlinear Sci. Numer. Simul. 33 70 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. R Yamapi, R Yonkeu, G Filatrella and J Kurths Eur. Phys. J. B 92 1 (2019)

    Article  CAS  Google Scholar 

  21. A Chamgoué, B Ndemanou, R Yamapi and P Woafo Braz. J. Phys. 51 376 (2021)

    Article  ADS  Google Scholar 

  22. B Guimfack, R Yonkeu, C Tabi and T Kofané Chaos Solitons Fractals 157 111936 (2022)

    Article  Google Scholar 

  23. W Li, D Huang, M Zhang, N Trisovic and J Zhao Chaos Solitons Fractals 121 30 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. W Xu, Q He, T Fang and H Rong Int. J. Nonlinear Mech. 39 1473 (2004)

    Article  Google Scholar 

  25. O Ushakov, H Wünsche, F Henneberger, I Khovanov, L Schimansky-Geier and M Zaks Phys. Rev. Lett. 95 123903 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. A Zakharova, T Vadivasova, V Anishchenko, A Koseska and J Kurths Phys. Rev. E 81 011106 (2010)

    Article  ADS  CAS  Google Scholar 

  27. T Banerjee and D Biswas Int. J. Bifurc. Chaos 23 1330020 (2013)

    Article  Google Scholar 

  28. Z Sun, J Fu, Y Xiao and W Xu Chaos 25 083102 (2015)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  29. Z Sun, X Yang, Y Xiao and W Xu Chaos 24 023126 (2014)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  30. W Wischert, A Wunderlin, A Pelster, M Olivier and J Groslambert Phys. Rev. E 49 203 (1994)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. L Ning and Z Ma Int. J. Bifurcation and Chaos 28 1850127 (2018)

    Article  ADS  Google Scholar 

  32. P Goash, S Sen, S Riaz and D Ray Phys. Rev. E 83 036205 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  33. L Ning Nonlinear Dyn. 102 115 (2020)

    Article  Google Scholar 

  34. X Tian, H Zhang and J Xing Biophys. J. 105 1079 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. M Lu, M Jolly, H Levine, J Onuchic and E Ben-Jacob Proc. Natl. Acad. Sci. USA 110 18144 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. E Nganso, R Yonkeu, G Filatrella and R Yamapi Nonlinear Dyn. 108 4315 (2022)

    Article  Google Scholar 

  37. R Yonkeu, B Guimfack, C Tabi, A Mohamadou and T Kofané Nonlinear Dyn. 111 3743 (2023)

    Article  Google Scholar 

  38. R Yonkeu Chaos Solitons Fractals 172 113489 (2023)

    Article  MathSciNet  Google Scholar 

  39. Y Xu, R Gu, H Zhang, W Xu and J Duan Phys. Rev. E 83 056215 (2011)

    Article  ADS  Google Scholar 

  40. S Saha, G Gangopadhyay and D Ray Commun. Nonlinear Sci. Numer. Simul. 85 105234 (2020)

    Article  MathSciNet  Google Scholar 

  41. F Kaiser Z. Naturforsch. A Phys. Sci. 33 294 (1978)

    Article  ADS  Google Scholar 

  42. H Fröhlich Int. J. Quantum Chem. 2 641 (1968)

    Article  ADS  Google Scholar 

  43. H Kadji, J Orou, R Yamapi and P Woafo Chaos Solitons Fractals 32 862 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. P Hagedorn Non-Linear Oscillations (Oxford: Clarendon Press) (1988)

    Google Scholar 

  45. L Lam Introduction to Nonlinear Physics (New York: Springer) (2003)

    Google Scholar 

  46. Z Sun, J Zhang, X Yang and W Xu Chaos 27 083102 (2017)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  47. M Gaudreault, F Drolet and J Vinals Phys. Rev. E 85 056214 (2012)

    Article  ADS  Google Scholar 

  48. B Martínez-Zérega and A Pisarchik Phys. Lett. A 340 1 (2005)

    Article  Google Scholar 

  49. M Bleich and J Socolar Phys. Lett. A 210 1 (1996)

    Article  MathSciNet  Google Scholar 

  50. R Yamapi, G Filatrella and M Aziz-Alaoui Chaos 20 013114 (2010)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2022JM-040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Ning, L. & Guo, Q. Bifurcation analysis in the system with the existence of three stable limit cycles. Indian J Phys 98, 1767–1781 (2024). https://doi.org/10.1007/s12648-023-02927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02927-1

Keywords

Navigation