Skip to main content
Log in

Homogeneous barrier height temperature dependence of Au/n-type GaAs Schottky diode

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The forward current–voltage (IV) measurements upon temperature of Au/n-type GaAs Schottky barrier diodes (SBDs) have been carried out. The deduced zero-bias Schottky barrier height (Φ0Bn) and the ideality factor (n) of Au/n-type GaAs over the temperature range 100–300 K have both shown non-ideal behavior. Indeed, Φ0Bn and n exhibit opposite variation with temperature with respect to the ideal behavior. This non-ideal behavior has been attributed previously to the inhomogeneous nature of the Schottky barrier height (SBH) and successfully interpreted in terms of the thermionic-emission model. To elucidate this non-ideal behavior, the homogeneous zero-bias SBH (\(\overline{\Phi }_{0Bn}\)) was determined as a function of temperature using the Norde method, assuming the Schottky diode to be ideal (n = 1). Furthermore, the SBH temperature coefficient value is found to be \(\Delta \overline{\Phi }_{0Bn} /\Delta T\) = − 0.18 meV/K which is negligible as compared to the one reported for the energy gap of GaAs, namely α = \(\Delta\) Eg/\(\Delta\) T = − 0.50 to − 0.60 meV/K. This feature is probably due to interface defects formed at the Au/n-GaAs contacts suggesting that the Fermi level is partially pinned at the interface between gold and n-type GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T Takagi, H Imamoto, F Sato, K Imanaka and M Shimura IEEE Photonics Technol. Lett. 1 14 (1989)

    Article  ADS  Google Scholar 

  2. K Inoue and H Sakaki Jpn J Appl Phys 23 L61 (1984)

    Article  ADS  Google Scholar 

  3. K Eisenbeiser, R Droopad and J-H Huang IEEE Electron Device Lett 20 507 (1999)

    Article  ADS  CAS  Google Scholar 

  4. D C Dumka, H Q Tserng, M Y Kao, E A Beam III and P Saunier IEEE Electron Device Lett 24 135 (2003)

    Article  ADS  CAS  Google Scholar 

  5. M Murakami Mater. Sci. Rep. 5 273 (1990)

    Article  CAS  Google Scholar 

  6. G Eftekhari J Vac Sci Technol B 18 2569 (2000)

    Article  CAS  Google Scholar 

  7. C H Liu, T K Lin and S J Chang Solid-State-Electron 49 1077 (2005)

    Article  ADS  CAS  Google Scholar 

  8. A K Ghosh, T Feng, J I Haberman and H P Maruska J Appl Phys 55 2990 (1984)

    Article  ADS  CAS  Google Scholar 

  9. R Singh, S K Arora, R Tyagi, S K Agarwal and D Kanjilal Bull Mater Sci 23 471 (2000)

    Article  CAS  Google Scholar 

  10. S Karataş and Ş Altında Solid-State Electronics 49 1052 (2005)

    Article  ADS  Google Scholar 

  11. M Mamor, K Bouziane, A Tirbiyine and H Alhamrashdi Superlattices Microstruct 72 344 (2014)

    Article  ADS  CAS  Google Scholar 

  12. O S Anilturk and R Turan Sci Technol 14 1060 (1999)

    ADS  CAS  Google Scholar 

  13. S Karataş and Ş Altında Mater Sci Eng B 122 133 (2005)

    Article  Google Scholar 

  14. R T Tung Phys Rev B 45 13509 (1992)

    Article  ADS  CAS  Google Scholar 

  15. J R Waldrop J Vac Sci Technol B 2 445 (1984)

    Article  CAS  Google Scholar 

  16. J L Everaert, R L Van Meirhaeghe, W H Laflere and F Cardon Semicond Sci Technol 5 60 (1990)

    Article  ADS  CAS  Google Scholar 

  17. H Helal et al. Eur Phys J Plus 137 450 (2022)

    Article  Google Scholar 

  18. Ç Ş Güçlü, A F Özdemir, D A Aldemir and S Altındal J Mater Sci Mater Electron 32 5624 (2021)

    Article  Google Scholar 

  19. I Lakhdari, N Sengouga, M Labed, T Tibermacine, R Mari and M Henini Semicond Sci Technol 37 055022 (2022)

    Article  ADS  CAS  Google Scholar 

  20. A Sellai, P Dawson and J Crystal Growth 288 166 (2006)

    Article  CAS  Google Scholar 

  21. E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts 2nd edition., (,, Oxford: Clarendon Press) (1988)

  22. J H Werner Appl Phys A 47 291 (1988)

    Article  ADS  Google Scholar 

  23. H Durmuş, M Yıldırım and Ş Altındal J Mater Sci Mater Electron 30 9029 (2019)

    Article  Google Scholar 

  24. M K Hudait and S B Krupanidhi Physica B 307 125 (2001)

    Article  ADS  CAS  Google Scholar 

  25. H Norde J Appl Phys 50 5052 (1979)

    Article  ADS  CAS  Google Scholar 

  26. A Gümüş, A Türüt and N Yalçin J Appl Phys 91 245 (2002)

    Article  ADS  Google Scholar 

  27. D Korucu, A Turut and H Efeoglu Physica B 414 35 (2013)

    Article  ADS  CAS  Google Scholar 

  28. M Missous, E H Rhoderick, D A Woolf and S P Wilkes Semicond Sci Technol 7 218 (1992)

    Article  ADS  CAS  Google Scholar 

  29. M Biber Physica B 325 138 (2003)

    Article  ADS  CAS  Google Scholar 

  30. S Hardikar, M K Hudait, P Modak, S B Krupanidhi and N Padha Appl Phys A 68 49 (1999)

    Article  ADS  CAS  Google Scholar 

  31. H W Hübers and H P Röser J Appl Phys 84 5326 (1998)

    Article  ADS  Google Scholar 

  32. M K Hudait, P Venkateswarlu and S B Krupanidhi Solid-State Electron 45 133 (2001)

    Article  ADS  CAS  Google Scholar 

  33. M.B. Panish, H.C. CaseyJ Appl Phys 40 163 (1969)

    Article  ADS  CAS  Google Scholar 

  34. C.K. Kim, P. Lautenschlager and M. CardonaSolid State Commun 59 797 (1986)

    Article  ADS  CAS  Google Scholar 

  35. J Tersoff Phys Rev Lett 52 465 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  36. H W Hubers and H P Roser J Appl Phys 84 5326 (1998)

    Article  ADS  CAS  Google Scholar 

  37. W Mönch J Appl Phys 109 113724 (2011)

    Article  ADS  Google Scholar 

  38. H C Card and E H Rhoderick J Phys D 4 1589 (1971)

    Article  ADS  CAS  Google Scholar 

  39. J C Bourgoin and T Neffati Solid-State Electron 43 153 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I confirm that all authors have contributed equally to the paper.

Corresponding author

Correspondence to Mohammed Mamor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakir, H., Mamor, M. & Bouziane, K. Homogeneous barrier height temperature dependence of Au/n-type GaAs Schottky diode. Indian J Phys 98, 1623–1628 (2024). https://doi.org/10.1007/s12648-023-02925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02925-3

Keywords

Navigation