Skip to main content
Log in

Effect of atomic ensemble position on the dynamics of cold atoms in an optical cavity: normal-mode splitting

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of cold atoms coupled to the light field via radiation pressure within a Fabry-Perot cavity. We observe the effects of changing the effective positioning of the atomic ensemble on the effective mechanical frequency and the damping rate of cold atoms. We further study the displacement spectrum of the atomic oscillator and analyze the occurrence of normal mode splitting into two modes. We mainly analyze how the position of the ensemble acts as an additional tool in significantly altering the atomic and cavity field interaction strength. The present scheme enables further studies of coherently controlling the dynamics of the cold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V B Braginsky and A B Manukin Sov. Phys. JETP 52 986 (1967)

    Google Scholar 

  2. T J Kippenberg et al Phys. Rev. Lett. 95 033901 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. O Arcizet et al Nature (London) 444 71 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. S Gigan et al Nature (London) 444 67 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. S Mahajan, T Kumar, A B Bhattacherjee and M Mohan Phys. Rev. A 87 013621 (2013)

    Article  ADS  Google Scholar 

  6. S Mahajan, N Aggarwal, A B Bhattacherjee and M Mohan J. Phys. B: At. Mol. Opt. Phys. 46 085301 (2013)

    Article  ADS  CAS  Google Scholar 

  7. S Mancini and P Tombesi Phys. Rev. A 49 4055 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. C Fabre et al Phys. Rev. A 49 1337 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. A Dorsel et al Phys. Rev. Lett. 51 1550 (1983)

    Article  ADS  Google Scholar 

  10. S Gupta, K L Moore, K W Murch and D M Stamper-Kurn Phys. Rev. Lett. 99 213601 (2007)

    Article  ADS  PubMed  Google Scholar 

  11. A A Clerk, F Marquardt and J G E Harris Phys. Rev. Lett. 104 213603 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. T P Purdy et al Phys. Rev. Lett. 105 133602 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. M Greiner, O Mandel, T Esslinger, T Hansch and I Bloch Nature (London) 415 39 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. I B Mekhov, C Maschler and H Ritsch Nat. Phys. 3 319 (2007)

    Article  CAS  Google Scholar 

  15. W Chen, D Meiser and P Meystre Phys. Rev. A 75 023812 (2007)

    Article  ADS  Google Scholar 

  16. D Meiser and P Meystre Phys. Rev. A 73 033417 (2006)

    Article  ADS  Google Scholar 

  17. A B Bhattacherjee Phys. Rev. A 80 043607 (2009)

    Article  ADS  Google Scholar 

  18. Q He et al J. Opt. Soc. Am. B 37 911 (2020)

    Article  ADS  CAS  Google Scholar 

  19. Qing He, Fazal Badshah, Thamer Alharbi, Liping Li and Linfeng Yang J. Opt. Soc. Am. B 37 148 (2020)

    Article  ADS  CAS  Google Scholar 

  20. Ali Motazedifard, A Dalafi and M H Naderi AVS Quant. Sci. 3 024701 (2021)

    Article  ADS  CAS  Google Scholar 

  21. N Aggarwal, S Mahajan and A B Bhattacherjee Int. J. Theor. Phys. 62 8 (2023)

    Article  CAS  Google Scholar 

  22. C Maschler Phys. Rev. Lett. 95 260401 (2005)

    Article  ADS  PubMed  Google Scholar 

  23. T Kumar, A B Bhattacherjee, P Verma, M Mohan J. Phys. B: At. Mol. Opt. Phys. 44 065302 (2011)

  24. P Treutlein et al Phys. Rev. Lett. 99 140403 (2007)

    Article  ADS  PubMed  Google Scholar 

  25. D F Walls and G J Milburn Quantum Optics (Berlin: Springer) (1994)

    Book  Google Scholar 

  26. V Giovannetti and D Vitali Phys. Rev. A 63 023812 (2001)

    Article  ADS  Google Scholar 

  27. D Vitali et al Phys. Rev. Lett. 98 030405 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. R Benguria and M Kac Phys. Rev. Lett. 46 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. S. Gradshteyn, I. M. Ryzhik Table of Integrals, Series and Products (Academic Press, Orlando) p. 1119 (1980)

  30. E X DeJesus and C Kaufman Phys. Rev. A 35 5288 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Mahajan.

Ethics declarations

Conflict of interest

The authors of this manuscript do not have any conflict of interest. Also, data generated or analyzed during this study are provided in full within the published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Mahajan, S., Batra, N. et al. Effect of atomic ensemble position on the dynamics of cold atoms in an optical cavity: normal-mode splitting. Indian J Phys 98, 1211–1216 (2024). https://doi.org/10.1007/s12648-023-02914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02914-6

Navigation