Skip to main content
Log in

Entanglement dynamics in the atom-cavity system with atom quasi-random walk behavior

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, it was demonstrated that an atom exhibits quasi-random walk behavior in an atom-cavity system when two longitudinal and transverse laser pumps are simultaneously excited by the system. The longitudinal pump irradiates the cavity, whereas the transverse pump irradiates an atom, directly. The model presented in this study contains a two-level atom in an electrodynamic cavity stimulated by two longitudinal and transverse laser pumps. The longitudinal laser frequency was tuned to excite the electrical (internal) state of an atom. We investigated the entanglement dynamics between the cavity field and internal atomic modes, and the von Neumann entropy measure was used to this end. The atomic quasi-random walk behavior and cavity dissipation were considered in this study. This study was conducted for different atomic states, two regimes of the strong, and the weak coupling. Our numerical results show that atomic random-walk motion can help us to enhance the amount of entanglement between the internal atomic modes and cavity fields for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, L., Ikram, M., Abbas, T., Ahmad, I.: Teleportation of atomic external states on the internal degrees of freedom. Quantum Inf. Process. 21, 1–15 (2022a)

    Article  MathSciNet  Google Scholar 

  • Ali, L., Ikram, M., Abbas, T., Ahmad, I.: Hyperentanglement teleportation through external momenta states. J. Phys. B at. Mol. Opt. Phys. 54, 235501 (2022b)

    Article  ADS  Google Scholar 

  • Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Entanglement criteria of two two-level atoms interacting with two coupled modes. Int. J. Theor. Phys. 54, 2839–2854 (2015)

    Article  MATH  Google Scholar 

  • Bell, J.S.: On the einstein podolsky rosen paradox. Physics Physique Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  • Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  • Chuang, I.L., Nielsen, M.A.: Quantum Computation and Quantum Information: 10th, Anniversary, pp. 528–607. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Deutsch, D., Ekert, A.: Quantum computation. Phys. World 11, 47 (1998)

    Article  Google Scholar 

  • A.K. Ekert, Quantum Cryptography and Bell’s Theorem, (Springer, 1992), pp. 413–418.

  • Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  • Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  • Hinkel, T., Ritsch, H., Genes, C.: A realization of a quasi-random walk for atoms in time-dependent optical potentials. Atoms 3, 433–449 (2015)

    Article  ADS  Google Scholar 

  • Ikram, M., Imran, M., Abbas, T.: Wheeler’s delayed-choice experiment: a proposal for the Bragg-regime cavity-QED implementation. Phys. Rev. A 91, 043636 (2015)

    Article  ADS  Google Scholar 

  • Ikram, M., Mujtaba, A.H., Abbas, T.: Double slit experiment with quantum detectors: mysteries, meanings, misinterpretations and measurement. Laser Phys. Lett. 15, 015208 (2017)

    Google Scholar 

  • Imamog, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  • Imran, M., Abbas, T., Ikram, M.: Cavity QED based tuneable, delayed-choice quantum eraser. Ann. Phys. 364, 160–167 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  • Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012)

    Article  ADS  Google Scholar 

  • Leibrandt, D.R., Labaziewicz, J., Vuletić, V., Chuang, I.L.: Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009)

    Article  ADS  Google Scholar 

  • Mahon, D.M.: Quantum Computing Explained. Wiley-IEEE Computer Society Press, Piscataway (2008)

    Google Scholar 

  • Nawaz, M., Abbas, T., Ikram, M.: Engineering quantum hyperentangled states in atomic systems. J. Phys. B at. Mol. Opt. Phys. 50, 215502 (2017)

    Article  ADS  Google Scholar 

  • Poldy, R., Buchler, B., Close, J.: Single-atom detection with optical cavities. Phys. Rev. A 78, 013640 (2008)

    Article  ADS  Google Scholar 

  • Saharia, A., Maddila, R.K., Ali, J., Yupapin, P., Singh, G.: An elementary optical logic circuit for quantum computing: a review. Opt. Quant. Electron. 51, 1–13 (2019)

    Article  Google Scholar 

  • Sames, C., Chibani, H., Hamsen, C., Altin, P.A., Wilk, T., Rempe, G.: Antiresonance phase shift in strongly coupled cavity QED. Phys. Rev. Lett. 112, 043601 (2014)

    Article  ADS  Google Scholar 

  • Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Ul-Islam, R., Haider, S.A., Abbas, T., Ikram, M.: Matter-wave teleportation via cavity-field trans-pads. Laser Phys. Lett. 13, 105204 (2016)

    Article  ADS  Google Scholar 

  • Vedral, V., Plenio, M., Jacobs, K., Knight, P.: Statistical inference, distinguishability of quantum states and quantum entanglement. Phys. Rev. A 56, 4452 (1997)

    Article  ADS  Google Scholar 

  • Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  • Walther, H., Varcoe, B.T., Englert, B.-G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. They work on it with together as the same.

Corresponding author

Correspondence to S. Jami.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Jami, S. & Khazaei Nezhad, M. Entanglement dynamics in the atom-cavity system with atom quasi-random walk behavior. Opt Quant Electron 54, 856 (2022). https://doi.org/10.1007/s11082-022-04278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04278-3

Keywords

Navigation