Skip to main content
Log in

Mott differential cross section by light nuclei using Monte Carlo simulation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The interactions of high speed \(e^{ - }\) and \(e^{ + }\) by an atomic nucleus have provided the accurate knowledge about nuclear dimensions and charge allocation. For two light nuclei (\({}_{2}^{4} {\text{He }}\) and \({}_{6}^{12} {\text{C}}\)), the ratio of differential Mott to differential Rutherford cross sections \(\left( {\frac{{d\sigma_{{{\text{Mott}}}} }}{{d\sigma_{{{\text{Retherford}}}} }}} \right)\) was calculated in the energy range \(5 {\text{keV}} - 10 {\text{MeV}}\) and through scattering angles from \(15^\circ\) to \(180^\circ\). In the present investigation, Mott differential cross section evaluated by the following relationships: Mott–Born, McKinley–Feshbach, and Rutherford equations. The first one which was modified with the three vital correction parameters namely for spin \(\left( {f_{{{\text{spin}}}} } \right)\), finite recoiled nucleus \(\left( {f_{{{\text{recoil}}}} } \right)\), and the finite nuclear size \(\left( {f_{{{\text{size}}}} } \right)\). Monte Carlo simulation was used to accomplish all the calculations. The results were in good agreement in comparison with results for others studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M E Rose Phys Rev 73 279 (1948)

    Article  ADS  CAS  Google Scholar 

  2. D Baltas, L Sakelliou and N Zamboglou The Physics of Modern Brachytherapy for Oncology (New York: Taylor & Francis) (2007)

    Google Scholar 

  3. H P gen Schieck Nuclear Reactions–An Introduction (Heidelberg: Springer) (2014)

    Book  Google Scholar 

  4. Y Nagashima Elementary Particle Physics: Quantum Field Theory and Particles (Hoboken: Wiley) (2010)

    Book  Google Scholar 

  5. R Hofstadter Phys Rev 92 978 (1953)

    Article  ADS  CAS  Google Scholar 

  6. M S Alkhazraji Phys. Chem. 203 110599 (2023)

    CAS  Google Scholar 

  7. A García-Abenza, A I Lozano, J C Oller, F Blanco, J D Gorfinkiel, P Limão-Vieira and G García Atoms 9 98 (2021)

    Article  ADS  Google Scholar 

  8. H Backe Eur Phys J D 76 153 (2022)

    Article  ADS  CAS  Google Scholar 

  9. L M Carter, A L Kesner, E Pratt, V Sanders, A Massicano, C Cutler, S Lapi and J S Lewis Mol Imaging Biol 22 73 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J O’Doherty, C D Mangini, D M Hamby, D Boozer, N Singh and E Hippeläinen Med Phys 48 871 (2021)

    Article  PubMed  Google Scholar 

  11. S Mohammed, A Trabelsi and K Manai Indian J Sci Technol 11 1 (2018)

    Article  Google Scholar 

  12. D T Pierce and R J Celotta Sci Instrum 51 478 (1980)

    Article  ADS  CAS  Google Scholar 

  13. J Chen, D Keane, Y-G Ma, A Tang and Z Xu Phys Rep 760 1 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. D Ma, B Yang, Q Zhang, J Liu and T Li Front Energy Res 9 705823 (2021)

    Article  Google Scholar 

  15. A Hussain, L Yang, S Mao, B Da, K Tőkési and Z Ding Nucl Mater Energy 26 100862 (2021)

    Article  CAS  Google Scholar 

  16. N Sinha and P Subraveti Mol Opt Phys 54 205001 (2021)

    Article  ADS  CAS  Google Scholar 

  17. P Kumar, A K Jain and A N Tripathi Phys Rev A 49 899 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. N F Mott Proc R Soc Lond 124 425 (1929)

    ADS  CAS  Google Scholar 

  19. N Sinha and B Antony J Phys Chem B 125 5479 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. N Y Aouina and Z E A Chaoui Surf Interface Anal 50 939 (2018)

    Article  CAS  Google Scholar 

  21. Ub Herbert Electron Scattering from Complex Nuclei (Cambridge: Academic Press) (2012)

    Google Scholar 

  22. P Sigmund Particle Penetration and Radiation Effects (Heidelberg: Springer) (2014)

    Book  Google Scholar 

  23. H Feshbach Phys Rev 88 295 (1952)

    Article  ADS  CAS  Google Scholar 

  24. J A Doggett and L V Spencer Phys. Rev. 103 1597 (1956)

    Article  ADS  CAS  Google Scholar 

  25. L Mikaelyan, A Borovoi and E Denisov Nucl Phys 47 328 (1963)

    Article  Google Scholar 

  26. J D Bjorken and D S Drell Relativistic Quantum Mechanics (New York: McGraw-Hill Book Company) (1964)

    Google Scholar 

  27. P B Kats, K V Halenka and I D Halenka Phys. Chem. 192 109919 (2022)

    CAS  Google Scholar 

  28. J H Crawford and M Slifkin Lawrence Point Defects in Solids: General and Ionic Crystals (Cham: Springer) (2013)

    Google Scholar 

  29. A V Butkevich and S V Luchuk Phys. Rev. C 102 024602 (2020)

    Article  ADS  CAS  Google Scholar 

  30. E B Podgorsak Radiation Physics for Medical Physics (Cham: Springer) (2010)

    Book  Google Scholar 

  31. B R Martin Nuclear and Particle Physics (Hoboken: Wiley) (2006)

    Book  Google Scholar 

  32. J Peter-Goodhew, J Humphreys and R Beanland Electron Microscopy and Analysis (Boca Raton: CRC Press) (2000)

    Book  Google Scholar 

  33. J H Crawford and M S Lawrence Point Defects in Solids: General and Ionic Crystals (Cham: Springer) (2013)

    Google Scholar 

  34. W A McKinipy and H Feshbach Phys. Rev. 74 3759 (1948)

    Google Scholar 

  35. R Idoeta and F Legarda Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 71 116 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ben Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhazraji, M.S., Aman Allah, S.M. & Ben Ahmed, A. Mott differential cross section by light nuclei using Monte Carlo simulation. Indian J Phys 98, 1435–1444 (2024). https://doi.org/10.1007/s12648-023-02902-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02902-w

Keywords

Navigation