Skip to main content
Log in

Instability of dust–ion acoustic solitary waves in a collisionless magnetized five components plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present paper, we have discussed the stability of dust-ion acoustic solitary waves obtained from the Korteweg-de Vries–Zakharov-Kuznetsov (KdV–ZK) equation and different modified KdV–ZK equations derived in the recent paper of Halder et al. (Z Naturforsch A 77:659, 2022) in a collisionless magnetized five components electron–positron–ion–dust plasma system consisting of warm adiabatic ions, Cairns distributed nonthermal positrons, Maxwellian distributed cold isothermal electrons, Cairns distributed nonthermal electrons and negatively charged static dust grains. We have used the small-k perturbation expansion method of Rowlands and Infeld (J Plasma Phys 3:567, 1969, J Plasma Phys 8:105, 1972, J Plasma Phys 10:293, 1973, J Plasma Phys 33:171, 1985) to analyze the stability of the steady state solitary wave solution of the KdV–ZK equation and different modified KdV–ZK equations. In this method, we want to find a nonlinear dispersion relation of the nonlinear evolution equation connecting the lowest order of ω and k, where ω is the wave frequency and k is the wave number. This nonlinear dispersion relation helps to analyze the stability of solitary structures of the KdV–ZK equation and different modified KdV–ZK equations. We have found the instability condition and the growth rate of instability up to the lowest order of wave number (k). We have graphically analyzed the growth rate of instability of different evolution equations with respect to different parameters of the present plasma system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

This paper has no associated data or the data will not be deposited.

References

  1. P Halder, A Bandyopadhyay, S Dalui and S Sardar Z. Naturforsch. A 77 659 (2022)

    ADS  Google Scholar 

  2. S Sardar, A Bandyopadhyay and K P Das Phys. Plasmas 23 073703 (2016)

    ADS  Google Scholar 

  3. S Sardar, A Bandyopadhyay and K P Das Phys. Plasmas 23 123706 (2016)

    ADS  Google Scholar 

  4. S Sardar, A Bandyopadhyay and K P Das Phys. Plasmas 24 063705 (2017)

    ADS  Google Scholar 

  5. G Rowlands J. Plasma Phys. 3 567 (1969)

    ADS  Google Scholar 

  6. E Infeld J. Plasma Phys. 8 105 (1972)

    ADS  Google Scholar 

  7. E Infeld and G Rowlands J. Plasma Phys. 10 293 (1973)

    ADS  Google Scholar 

  8. E Infeld J. Plasma Phys. 33 171 (1985)

    ADS  Google Scholar 

  9. E Infeld and G Rowlands Proc. Roy. Soc. Lond. A. Math. Phys. Sci. 366 537 (1979)

    ADS  Google Scholar 

  10. E W Laedke and K H Spatschek J. Plasma Phys. 28 469 (1982)

    ADS  Google Scholar 

  11. K P Das and F Verheest J. Plasma Phys. 41 139 (1989)

    ADS  Google Scholar 

  12. K P Das, F W Sluijter and F Verheest Phys. Scr. 45 358 (1992)

    ADS  Google Scholar 

  13. A A Mamun and R A Cairns J. Plasma Phys. 56 175 (1996)

    ADS  Google Scholar 

  14. G Ghosh and K P Das J. Plasma Phys. 59 333 (1998)

    ADS  Google Scholar 

  15. D Chakraborty and K P Das J. Plasma Phys. 60 151 (1998)

    ADS  Google Scholar 

  16. A Bandyopadhyay and K P Das J. Plasma Phys. 62 255 (1999)

    ADS  Google Scholar 

  17. S Munro and E J Parkes J. Plasma Phys. 62 305 (1999)

    ADS  Google Scholar 

  18. A Bandyopadhyay and K P Das Phys. Plasmas 7 3227 (2000)

    ADS  Google Scholar 

  19. S Munro and E J Parkes J. Plasma Phys. 64 411 (2000)

    ADS  Google Scholar 

  20. A A Mamun, S M Russell, C A Mendoza-Briceno, M N Alam, T K Datta and A K Das Planet Space Sci. 48 163 (2000)

    ADS  Google Scholar 

  21. W S Duan Phys. Plasmas 8 3583 (2001)

    ADS  Google Scholar 

  22. W S Duan Chaos Solitons Fractals 14 503 (2002)

    ADS  Google Scholar 

  23. A Bandyopadhyay and K P Das J. Plasma Phys. 68 285 (2002)

    ADS  Google Scholar 

  24. D Chakraborty and K P Das Phys. Plasmas 10 2236 (2003)

    ADS  Google Scholar 

  25. S Munro and E J Parkes J. Plasma Phys. 70 543 (2004)

    ADS  Google Scholar 

  26. E J Parkes and S Munro J. Plasma Phys. 71 695 (2005)

    ADS  Google Scholar 

  27. J Das, A Bandyopadhyay and K P Das J. Plasma Phys. 72 587 (2006)

    ADS  Google Scholar 

  28. F Tian-Jun Commun. Theor. Phys. 47 333 (2007)

    ADS  Google Scholar 

  29. J Das, A Bandyopadhyay and K P Das Phys. Plasmas 14 092304 (2007)

    ADS  Google Scholar 

  30. J H Chen and W S Duan Phys. Plasmas 14 083702 (2007)

    ADS  Google Scholar 

  31. W S Duan, J H Chen, X R Hong and G X Wan Commun. Theor. Phys. 47 149 (2007)

    ADS  Google Scholar 

  32. M G M Anowar and A A Mamun IEEE Trans. Plasma Sci. 36 2867 (2008)

    ADS  Google Scholar 

  33. M G M Anowar and A A Mamun IEEE Trans. Plasma Sci. 37 1638 (2009)

    ADS  Google Scholar 

  34. S A Islam, A Bandyopadhyay and K P Das J. Plasma Phys. 75 593 (2009)

    ADS  Google Scholar 

  35. M G M Anowar and A A Mamun J. Plasma Phys. 75 475 (2009)

    ADS  Google Scholar 

  36. M Shalaby, S Kel-Labany, E F El-Shamy, W F El-Taibany and M A Khaled Phys. Plasmas 16 123706 (2009)

    ADS  Google Scholar 

  37. J H Chen and W S Duan Phys. Plasmas 17 063701 (2010)

    ADS  Google Scholar 

  38. W F El-Taibany, N A El-Bedwehy and E F El-Shamy Phys. Plasmas 18 033703 (2011)

    ADS  Google Scholar 

  39. O Rahman, A A Mamun and K S Ashrafi Astrophys. Space Sci. 335 425 (2011)

    ADS  Google Scholar 

  40. A A Mamun, S S Duha and P K Shukla J. Plasma Phys. 77 617 (2011)

    ADS  Google Scholar 

  41. T Akhter, M M Hossain and A A Mamun Phys. Plasmas 19 093707 (2012)

    ADS  Google Scholar 

  42. M Masum Haider, S Akter, S S Duha and A A Mamun Cent. Eur. J. Phys. 10 1168 (2012)

    Google Scholar 

  43. M M Haider and A A Mamun Phys. Plasmas 19 102105 (2012)

    ADS  Google Scholar 

  44. M M Haider Contrib. Plasma Phys. 53 234 (2013)

    ADS  Google Scholar 

  45. G Williams and I Kourakis Phys. Plasmas 20 122311 (2013)

    ADS  Google Scholar 

  46. S Akter, M M Haider, S S Duha, M Salahuddin and A A Mamun Phys. Scr. 88 015501 (2013)

    ADS  Google Scholar 

  47. N R Kundu, M M Masud, K S Ashrafi and A A Mamun Astrophys. Space Sci. 343 279 (2013)

    ADS  Google Scholar 

  48. J Das, A Bandyopadhyay and K P Das J. Plasma Phys. 80 89 (2014)

    ADS  Google Scholar 

  49. A R Seadawy Comput. Math. Appl. 67 172 (2014)

    MathSciNet  Google Scholar 

  50. T S Gill, P Bala and A S Bains Astrophys. Space Sci. 357 63 (2015)

    ADS  Google Scholar 

  51. N Akhtar, W F El-Taibany, S Mahmood, E E Behery, S A Khan, S Ali and S Hussain J. Plasma Phys. 81 905810518 (2015)

    Google Scholar 

  52. N Shahmohammadi and D Dorranian Contrib. Plasma Phys. 55 643 (2015)

    ADS  Google Scholar 

  53. P Goldstein and E Infeld J. Plasma Phys. 82 905820603 (2016)

    Google Scholar 

  54. A R Seadawy Phys. A Stat. Mech. Appl. 455 44 (2016)

    Google Scholar 

  55. O H El-Kalaawy, S M Moawad and S Wael Results Phys. 7 934 (2017)

    ADS  Google Scholar 

  56. A R Seadawy, M Arshad and D Lu Eur. Phys. J. Plus 132 162 (2017)

    Google Scholar 

  57. A R Seadawy, D Lu and C Yue J. Taibah Univ. Sci. 11 623 (2017)

    Google Scholar 

  58. A R Abdullah, A Seadawy and J Wang Mod. Phys. Lett. A 33 1850145 (2018)

    ADS  Google Scholar 

  59. B Ghanbari, A Yusuf, M Inc and D Baleanu Adv. Differ. Equ. 2019 49 (2019)

    Google Scholar 

  60. S K El-Labany, W M Moslem and N K Elneely Adv. Space Res. 66 266 (2020)

    ADS  Google Scholar 

  61. A Jhangeer, M Munawar, M B Riaz and D Baleanu Results Phys. 19 103330 (2020)

    Google Scholar 

  62. M Khalid, A Althobaiti, S K Elagan, S A Alkhateeb, E A Elghmaz and S A El-Tantawy Symmetry 13 2232 (2021)

    ADS  Google Scholar 

  63. D N Gao, J B Yue, J P Wu, W S Duan and Z Z Li Plasma Phys. Rep. 47 48 (2021)

    ADS  Google Scholar 

  64. D N Gao, J P Wu and W S Duan Contrib. Plasma Phys. 61 202100010 (2021)

    Google Scholar 

  65. S A El-Tantawy, A H Salas and C H Jairo Plos One 16 0254816 (2021)

    Google Scholar 

  66. R Sarma Astrophys. Space Sci. 367 29 (2022)

    ADS  Google Scholar 

  67. N A Zedan, A Atteya, W F El-Taibany and S K El-Labany Waves Random Complex Media 32 728 (2022)

    MathSciNet  ADS  Google Scholar 

  68. S Sardar and A Bandyopadhyay Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022, vol 193 (Springer) (2022)

    Google Scholar 

  69. A R Seadawy, S T R Rizvi and H Zahed Mathematics 11 1074 (2023)

    Google Scholar 

  70. M A Allen and G Rowlands J. Plasma Phys. 50 413 (1993)

    ADS  Google Scholar 

  71. M A Allen and G Rowlands J. Plasma Phys. 53 63 (1995)

    ADS  Google Scholar 

  72. J A Pava Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, vol 156 (American Mathematical Society) p 26 (2009)

    Google Scholar 

  73. T Taniuti and C C Wei J. Phys. Soc. Jpn. 24 941 (1968)

    ADS  Google Scholar 

  74. W Malfliet and W Hereman Phys. Scr. 54 563 (1996)

    ADS  Google Scholar 

  75. Q M Huang, Y T Gao and L Hu Appl. Math. Comput. 352 270 (2019)

    MathSciNet  Google Scholar 

  76. F Haq, K Shah, Q M Al-Mdallal and F Jarad Eur. Phys. J. Plus 134 461 (2019)

    Google Scholar 

  77. I Ali, A R Seadawy, S T R Rizvi, M Younis and K Ali Int. J. Mod. Phys. 34 2050283 (2020)

    ADS  Google Scholar 

  78. A R Seadawy and N Cheemaa Indian J. Phys. 94 117 (2020)

    ADS  Google Scholar 

  79. Y J Feng, Y T Gao, L Q Li and T T Jia Eur. Phys. J. Plus 135 272 (2020)

    Google Scholar 

  80. H Liu, H Khan, R Shah, A A Alderremy, S Aly and D Baleanu Complexity 2020 (2020)

  81. S Rizvi, A R Seadawy, F Ashraf, M Younis, H Iqbal and D Baleanu Results Phys. 19 103661 (2020)

    Google Scholar 

  82. G Akram, M Sadaf and I Zainab Mod. Phys. Lett. B 36 2150520 (2022)

    ADS  Google Scholar 

  83. M Alquran and R Alhami Nonlinear Dyn. 109 1985 (2022)

    Google Scholar 

  84. M M Hossain, M A N Sheikh et al Part. Differ. Equ. Appl. Math. 6 100422 (2022)

    Google Scholar 

  85. D C Nandi, M S Ullah, M Z Ali et al Heliyon 8 10924 (2022)

    Google Scholar 

  86. A R Seadawy and A Ali Int. J. Mod. Phys. B 2350276 (2023)

Download references

Acknowledgements

One of the authors (Paltu Halder) is thankful to the Government of India, CSIR (HRDG) Fellowship for providing financial support [File No.: 09/096(0988)/2019-EMR-I].

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to S. Sardar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The expressions of A, \(B_{1}\) and D are

$$\begin{aligned}{} & {} A=\frac{1}{V}(V^{2}-\sigma \gamma )^{2}, \end{aligned}$$
(51)
$$\begin{aligned}{} & {} B_{1}=\frac{1}{2}\bigg [\frac{3V^2+ \sigma \gamma (\gamma -2)}{(V^2-\sigma \gamma )^3}-(\overline{n}_{c0}\sigma ^{2}_{c}+\overline{n}_{s0}\sigma ^{2}_{s}-\overline{n}_{p0}\sigma ^{2}_{p})\bigg ], \end{aligned}$$
(52)
$$\begin{aligned}{} & {} D=\bigg [1+\frac{V^{4}}{{\omega ^{2}_{c}}(V^{2}-\sigma \gamma )^{2}}\bigg ], \end{aligned}$$
(53)

where

$$\begin{aligned} V^{2} = \sigma \gamma +\frac{1}{1-\beta _{e}\overline{n}_{c0}\sigma _{c} -\beta _{p}\overline{n}_{p0}\sigma _{p}}. \end{aligned}$$

Here \(\gamma (=\frac{5}{3})\) is the ratio of two specific heats, \(\omega _{c}\) is the ion cyclotron frequency normalized by ion plasma frequency \((\omega _{p})\), \(\beta _{e}\) and \(\beta _{p}\) are the nonthermal parameters associated with the nonthermal velocity distributions of hot electrons and positrons, respectively, and the expressions of \(\overline{n}_{c0}, \overline{n}_{s0}, \overline{n}_{p0}, \overline{N}_{d0}, \sigma _{c}, \sigma _{s}\), and \(\sigma _{p}\) are given as follows:

$$\begin{aligned} (\overline{n}_{c0}, \overline{n}_{s0}, \overline{n}_{p0}, \overline{N}_{d0}) =\frac{1}{1+{n}_{sc}-{n}_{pc}+{n}_{dc}}(1, n_{sc}, n_{pc}, n_{dc}), \end{aligned}$$
(54)
$$\begin{aligned}{} & {} (\sigma _{c},\sigma _{s},\sigma _{p}) =\frac{(1+{n}_{sc}-{n}_{pc}+{n}_{dc})}{\sigma _{sc}\sigma _{pc}+n_{sc}\sigma _{pc}+n_{pc}\sigma _{sc}}(\sigma _{sc}\sigma _{pc},\sigma _{pc}, \sigma _{sc}), \end{aligned}$$
(55)

where \({n}_{sc}=\frac{n_{s0}}{n_{c0}}, {n}_{pc}=\frac{n_{p0}}{n_{c0}}, {n}_{dc}=\frac{N_{d0}}{n_{c0}}\), \(\sigma =\frac{T_{i}}{T_{pef}}\), \(\sigma _{sc}=\frac{T_{se}}{T_{ce}},\) \(\sigma _{pc}=\frac{T_{p}}{T_{ce}}\) and \(T_{pef}\) is given by the following expression:

$$\begin{aligned} \frac{n_{c0}}{T_{ce}}+\frac{n_{s0}}{T_{se}}+\frac{n_{p0}}{T_{p}}=\frac{n_{c0}+n_{s0}-n_{p0}+Z_{d}n_{d0}}{T_{pef}}. \end{aligned}$$
(56)

Here \(n_{j0}\) (\(j=c\) for nonthermal electron, \(j=s\) for itsohermal electron, \(j=p\) for nonthermal positron and \(j=d\) for dust particulates) is the equilibrium number density of j-th species, \(T_{ce}\) (\(T_{p}\)) and \(T_{se}\) are the average temperatures of nonthermal electron (positron) and isothermal electron, respectively. The charge neutrality condition (\(n_{i0}+n_{p0}=n_{c0}+n_{s0}+Z_{d}n_{d0}\)) and the effective temperature equation (56) can be written as

$$\begin{aligned} \overline{n}_{c0}+\overline{n}_{s0}-\overline{n}_{p0}+\overline{N}_{d0}=1, \end{aligned}$$
(57)
$$\begin{aligned} \overline{n}_{c0}\sigma _{c}+\overline{n}_{s0}\sigma _{s}+\overline{n}_{p0}\sigma _{p}=1, \end{aligned}$$
(58)

where

$$\begin{aligned} {Z_{d} n_{d0}}={N}_{d0}\Longleftrightarrow Z_{d}\overline{n_{d0}}=\overline{N}_{d0}. \end{aligned}$$

Appendix 2

The expression of \(B_{2}\) is

$$\begin{aligned} B_{2} = & {} \frac{1}{4}\bigg [\{15V^{4}+V^{2}\sigma ({\gamma }^{3}+13{\gamma }^{2}-18\gamma ) \nonumber \\ & + {\sigma }^{2}(2{\gamma }^{4}-7{\gamma }^{3}+6{\gamma }^{2})\} \times \frac{1}{(V^2-\sigma \gamma )^5} \nonumber \\ & - {} \{(1+3\beta _{e})\overline{n}_{c0}\sigma ^{3}_{c}+\overline{n}_{s0}\sigma ^{3}_{s}+(1+3\beta _{p})\overline{n}_{p0}\sigma ^{3}_{p}\}\bigg ]. \end{aligned}$$
(59)

Appendix 3

The expression of \(B_{3}\) is

$$\begin{aligned} B_{3}= & {} \frac{1}{12}\bigg [ \bigg \{105V^{6}+V^{4}\sigma (\gamma ^{4}+21\gamma ^{3}+161\gamma ^{2}-174\gamma )\nonumber \\+ & {} V^{2}\sigma ^{2}(8\gamma ^{5}+53\gamma ^{4}-162\gamma ^{3}+108\gamma ^{2})\nonumber \\+ & {} \sigma ^{3}(6\gamma ^{6}-29\gamma ^{5}+46\gamma ^{4}-24\gamma ^{3})\bigg \} \times \frac{1}{(V^2-\sigma \gamma )^{7}}\nonumber \\- & {} \bigg \{(1+8\beta _{e})\overline{n}_{c0}\sigma ^{4}_{c}+\overline{n}_{s0}\sigma ^{4}_{s}- (1+8\beta _{p})\overline{n}_{p0}\sigma ^{4}_{p}\bigg \}\bigg ]. \end{aligned}$$
(60)

Appendix 4

The expressions of \(Q^{(j)}_{1}\) of the Eq. (19) for \(j=0, 1,\) and 2 are

$$\begin{aligned}{} & {} Q^{(0)}_{1}=0, \end{aligned}$$
(61)
$$\begin{aligned}{} & {} Q^{(1)}_{1}= it_{1}q^{(0)}_{1}-it_{2}\frac{d^{2}q^{(0)}_{1}}{dZ^{2}}-it_{3}\Phi ^{r}_{0}q^{(0)}_{1}, \end{aligned}$$
(62)
$$\begin{aligned}{} & {} Q^{(2)}_{1}= i\omega ^{(2)}q^{(0)}_{1}+it_{1}q^{(1)}_{1}-it_{2}\frac{d^{2}q^{(1)}_{1}}{dZ^{2}}-it_{3}\Phi ^{r}_{0}q^{(1)}_{1}+ t_{4}\frac{dq^{(0)}_{1}}{dZ}, \end{aligned}$$
(63)

where

$$\begin{aligned} t_{4}=3n^{2}_{z}C+2n_{z}l_{x}b_{2}+l^{2}_{x}b_{3}+m_{y}^{2}b_{4}. \end{aligned}$$
(64)

Appendix 5

The coefficients of the Eq. (31) are

$$\begin{aligned} S= & {} \frac{1}{r(4-r)}\bigg [\frac{4\{2(r+2)-(r+4)M_{r}\}}{r}\bigg (\frac{t_{2}}{\chi ^{2}}\bigg )\nonumber \\- & {} \frac{2r\{4+(r+1)(r+4)M_{r}\}}{(r+1)(r+2)}(a^{r}t_{3})\bigg ], \end{aligned}$$
(65)
$$\begin{aligned}{} & {} T=\frac{1}{r(4-r)}\bigg [16(1-M_{r})\bigg (U\frac{t_{4}}{\chi ^{2}}\bigg ) +\frac{16(M_{r}-1)}{r^{2}}\bigg (\frac{t_{2}}{\chi ^{2}}\bigg )^{2}\nonumber \\{} & {} +\frac{8rM_{r}}{(r+1)(r+2)}(a^{r}t_{3})^{2}-\frac{8\{4+(r^{2}+r-4)M_{r}\}}{r(r+1)(r+2)}\bigg (\frac{t_{2}}{\chi ^{2}}\bigg )(a^{r}t_{3})\bigg ], \end{aligned}$$
(66)

where

$$\begin{aligned} M_{r}=\frac{\int ^{\infty }_{-\infty }N^{2+\frac{4}{r}}dZ}{\int ^{\infty }_{-\infty }N^{\frac{4}{r}}dZ} ~\text{ with }N=\text{ sech }\bigg (\frac{Z}{\chi }\bigg ). \end{aligned}$$
(67)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, P., Bandyopadhyay, A. & Sardar, S. Instability of dust–ion acoustic solitary waves in a collisionless magnetized five components plasma. Indian J Phys 98, 771–783 (2024). https://doi.org/10.1007/s12648-023-02839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02839-0

Keywords

Navigation