Skip to main content
Log in

Supersymmetry: a decade after Higgs discovery

  • Review paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Supersymmetric extensions of the Standard Model have been in vogue for over half a century. They have many interesting theoretical properties like calculability, absence of quadratic divergences, and phenomenologically impactful features like gauge coupling unification, dark matter candidates, signatures at present and future colliders, etc. A defining feature of these models is the calculability of Higgs mass in terms of a few parameters. The discovery of a Higgs particle with a mass of around 125 GeV thus has significant implications. The null results for the searches of superpartners at LHC have also put further constraints. Taken together with direct detection limits on weakly interacting massive particle dark matter, it appears that TeV scale supersymmetry is not realized in Nature, and the theoretical expectations have reached a turning point. The present onslaught from the experiments suggests that supersymmetric models need a more complex particle structure, Lagrangian and breaking patterns to be a natural solution to the hierarchy problem. We review existing models and discuss their feasibility in the current and future experimental programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. There are some hints of new physics in the muon \(g-2\) experiment, which we will discuss it later in the text.

References

  1. M Bertolini Lectures on Supersymmetry, https://people.sissa.it/bertmat/susycourse.pdf

  2. M A Luty TASI Lectures on Supersymmetry Breaking Theoretical Advanced Study Institute in Elementary Particle Physics: Physics in D \(\geqq\) 4, pp 495–582 (2005)

  3. A Bilal Introduction to supersymmetry (2001)

  4. S Weinberg The Quantum Theory of Fields. Vol. 3: Supersymmetry (Cambridge: Cambridge University Press) (2013)

    MATH  Google Scholar 

  5. S P Martin Adv. Ser. Direct. High Energy Phys. 18 1 (1998)

    ADS  Google Scholar 

  6. ATLAS Collaboration Atlas Nature 607 52 (2022)

  7. A portrait of the Higgs boson by the CMS experiment ten years after the discovery (2022)

  8. R L Workman et al Review of Particle Physics, PTEP (2022)

  9. M Drees, R Godbole and P Roy Theory and Phenomenology of Sparticles: An Account of Four-dimensional N = 1 Supersymmetry in High Energy Physics (2004)

  10. H E Haber and R Phys. Rev. Lett. 66 1815 (1991)

    ADS  Google Scholar 

  11. P Draper and H Rzehak Phys. Rept. 619 1 (2016)

    ADS  Google Scholar 

  12. P Slavich et al Eur. Phys. J. C 81 450 (2021)

    ADS  Google Scholar 

  13. H Bahl, T Hahn, S Heinemeyer, W Hollik, S Paßehr, H Rzehak and G Weiglein Comput. Phys. Commun. 249 107099 (2020)

    MathSciNet  Google Scholar 

  14. R Kitano and Y Nomura Phys. Rev. D 73 095004 (2006)

    ADS  Google Scholar 

  15. E Bagnaschi et al Eur. Phys. J. C 79 149 (2019)

    ADS  Google Scholar 

  16. D Chowdhury, R M Godbole, K A Mohan and S K Vempati JHEP 02 110 (2014) [Erratum: JHEP 03, 149 (2018)]

  17. C Borschensky, M Krämer, A Kulesza, M Mangano, S Padhi, T Plehn and X Portell Eur. Phys. J. C 74 3174 (2014)

    ADS  Google Scholar 

  18. ATLAS SUSY RESULTS ATLAS SUSY Public Results, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

  19. M Tanabashi et al Phys. Rev. D 98 030001 (2018)

    ADS  Google Scholar 

  20. G W Bennett et al Phys. Rev. D 73 072003 (2006)

    ADS  Google Scholar 

  21. J P Lees et al Phys. Rev. D 86 052012 (2012)

    ADS  Google Scholar 

  22. A M Baldini et al Eur. Phys. J. C 76 434 (2016)

    ADS  Google Scholar 

  23. U Bellgardt et al Nucl. Phys. B 299 1 (1988)

    ADS  Google Scholar 

  24. Y Amhis et al Eur. Phys. J. C 77 895 (2017)

    ADS  Google Scholar 

  25. Y Miyazaki et al Phys. Lett. B 648 341 (2007)

    ADS  Google Scholar 

  26. B Aubert et al Phys. Rev. Lett. 98 061803 (2007)

    ADS  Google Scholar 

  27. Y Miyazaki et al Phys. Lett. B 699 251 (2011)

    ADS  Google Scholar 

  28. J Hisano and D Nomura Phys. Rev. D 59 116005 (1999)

    ADS  Google Scholar 

  29. M Ciuchini, A Masiero, P Paradisi, L Silvestrini, S K Vempati and O Vives Nucl. Phys. B 783 112 (2007)

    ADS  Google Scholar 

  30. J Hisano and K Tobe Phys. Lett. B 510 197 (2001)

    ADS  Google Scholar 

  31. E Dudas, P Lamba and S K Vempati Phys. Lett. B 804 135404 (2020)

    MathSciNet  Google Scholar 

  32. M Misiak, S Pokorski and J Rosiek Adv. Ser. Direct. High Energy Phys. 15 795 (1998)

    ADS  Google Scholar 

  33. G D’Ambrosio, G F Giudice, G Isidori and A Strumia Nucl. Phys. B 645 155 (2002)

    ADS  Google Scholar 

  34. G W Bennett et al Phys. Rev. D 73 072003 (2006)

    ADS  Google Scholar 

  35. B Abi et al Phys. Rev. Lett. 126 141801 (2021)

    ADS  Google Scholar 

  36. T Albahri et al Phys. Rev. A 103 042208 (2021)

    ADS  Google Scholar 

  37. T Albahri et al Measurement of the anomalous precession frequency of the muon in the Fermilab Muon \(g-2\) Experiment Phys. Rev. D 103 072002 (2021)

    ADS  Google Scholar 

  38. T Aoyama, N Asmussen, M Benayoun, J Bijnens, T Blum, M Bruno, I Caprini, C C Calame, M Ce Colangelo and F Curciarello Phys. Rep. 887 1 (2020)

    ADS  Google Scholar 

  39. S Borsanyi et al Nature 593 51 (2021)

    ADS  Google Scholar 

  40. M Cè et al Window observable for the hadronic vacuum polarization contribution to the muon \(g-2\) from lattice QCD (2022)

  41. N Saito AIP Conf. Proc. 1467 45 (2012)

    ADS  Google Scholar 

  42. T Mibe Nucl. Phys. B Proc. Suppl. 218 242 (2011)

    ADS  Google Scholar 

  43. M Abe et al PTEP 2019 053C02 (2019)

    Google Scholar 

  44. U Chattopadhyay and P Nath Phys. Rev. D 53 1648 (1996)

    ADS  Google Scholar 

  45. T Moroi Phys. Rev. D 53 6565 (1996) [Erratum: Phys. Rev. D 56, 4424 (1997)]

  46. S Baum, M Carena, N R Shah and C E Wagner JHEP 01 025 (2022)

    ADS  Google Scholar 

  47. M Endo, K Hamaguchi, S Iwamoto and T Kitahara JHEP 07 075 (2021)

    ADS  Google Scholar 

  48. F Zwicky Astrophys. J. 86 217 (1937)

    ADS  Google Scholar 

  49. F Zwicky Helv. Phys. Acta 6 110 (1933)

    ADS  Google Scholar 

  50. V C Rubin and W K Ford Jr Astrophys. J. 159 379 (1970)

    ADS  Google Scholar 

  51. N Aghanim Planck et al Planck 2018 Results. VI. Cosmological Parameters (2018)

  52. E Aprile et al Dark Phys. Rev. Lett. 121 111302 (2018)

    ADS  Google Scholar 

  53. E Aprile et al Phys. Rev. Lett. 122 141301 (2019)

    ADS  Google Scholar 

  54. C Amole et al Phys. Rev. D 100 022001 (2019)

    ADS  Google Scholar 

  55. N Arkani-Hamed, A Delgado and G F Giudice Nucl. Phys. B 741 108 (2006)

    ADS  Google Scholar 

  56. P Nath Higgs Int. J. Mod. Phys. A 27 1230029 (2012)

    ADS  Google Scholar 

  57. E Bagnaschi et al Eur. Phys. J. C 78 256 (2018)

    ADS  Google Scholar 

  58. J C Costa et al Eur. Phys. J. C 78 158 (2018)

    ADS  Google Scholar 

  59. J D Wells Nucl. Phys. Proc. Suppl. 62 235 (1998)

    ADS  Google Scholar 

  60. N Arkani-Hamed and S Dimopoulos JHEP 06 073 (2005)

    ADS  Google Scholar 

  61. G F Giudice and A Romanino Nucl. Phys. B699 65 (2004) [Erratum: Nucl. Phys. B706, 487(2005)]

  62. A Arvanitaki, N Craig, S Dimopoulos and G Villadoro JHEP 02 126 (2013)

    ADS  Google Scholar 

  63. L Randall and M Reece JHEP 08 088 (2013)

    ADS  Google Scholar 

  64. A G Cohen, D B Kaplan and A E Nelson Phys. Lett. B 388 588 (1996)

    ADS  Google Scholar 

  65. S Dimopoulos and G F Giudice Phys. Lett. B 357 573 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

S.K.V. thanks SERB Grant CRG/2021/007170 “Tiny Effects from Heavy New Physics” from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir K. Vempati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanarayana Mummidi, V., Lamba, P. & Vempati, S.K. Supersymmetry: a decade after Higgs discovery. Indian J Phys 97, 3315–3326 (2023). https://doi.org/10.1007/s12648-023-02812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02812-x

Keywords

Navigation