Skip to main content
Log in

Supersymmetry unification, naturalness, and discovery prospects at HL-LHC and HE-LHC

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An overview of recent developments in supersymmetry, supergravity and unification and prospects for supersymmetry discovery at the current and future high energy colliders and elsewhere are discussed. Currently several empirical data point to supersymmetry as an underlying symmetry of particle physics. These include the unification of gauge couplings within supersymmetry, prediction within supergravity unification that the Higgs boson mass lie below 130 GeV supported by the observation of the Higgs boson mass at ~125 GeV, and vacuum stability up to the Planck scale for the observed value of the Higgs boson mass while the standard model does not do that. Additionally, of course, supersymmetry solves the big hierarchy problem arising from the quadratic divergence to the Higgs boson mass square in the Standard Model, and provides a frame work that allows for extrapolation of physics from the electroweak scale to the grand unification scale consistent with experiment. Currently there is no alternative paradigm that does that. However, the large loop corrections needed to lift the mass of the Higgs boson from its tree value to the experimentally observed values imply that the scale of weak scale supersymmetry lies in the TeV region making the observation of sparticles more challenging. The lightest of the sparticles could still lie with in reach of the High Luminosity (HL)-LHC and High Energy (HE)-LHC operating at an optimal luminosity of 2.5 × 1035 cm−2 s−1 at a center of mass energy of 27 TeV. Variety of other experiments related to search for dark matter, improved experiments on the measurement of gμ − 2 and EDMs of elementary particles could lend further support for new physics beyond the standard model and specifically supersymmetry. Supergravity theories may also contain hidden sectors which may interact with the visible sector gravitationally and also via extra-weak or ultra-weak interactions. In this case a variety of new signals might arise in indirect detection and at LHC in the form of long lived charged sparticles which can either decay inside the detector or outside. We note that the discovery of sparticles will establish supersymmetry as a fundamental symmetry of nature, and its confirmation will also lend support for strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.A. Golfand, E.P. Likhtman, JETP Lett. 13, 323 (1971)

    ADS  Google Scholar 

  2. D.V. Volkov, V.P. Akulov, Phys. Lett. B 46, 109 (1973)

    Article  ADS  Google Scholar 

  3. J. Wess, B. Zumino, Nucl. Phys. B 78, 1 (1974)

    Article  ADS  Google Scholar 

  4. J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)

    Article  ADS  Google Scholar 

  5. S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  7. A. Salam, in Elementary Particle Theory, edited by N. Svartholm (Almquist and Wiksells, Stockholm, 1969), p. 367

  8. G. ’t Hooft, Nucl. Phys. B 35, 167 (1971)

    Article  ADS  Google Scholar 

  9. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 44, 189 (1972)

    Article  ADS  Google Scholar 

  10. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  11. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  12. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. P.W. Higgs, Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  14. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  16. S. Chatrchyan et al. [CMS Collaboration], Science 338, 1569 (2012)

    Article  ADS  Google Scholar 

  17. G. Aad et al. [ATLAS Collaboration], Science 338, 1576 (2012)

    Article  ADS  Google Scholar 

  18. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, JHEP 1208, 098 (2012)

    Article  ADS  Google Scholar 

  19. A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Phys. Rev. Lett. 115, 201802 (2015)

    Article  ADS  Google Scholar 

  20. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 010001 (2018)

    Article  Google Scholar 

  21. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  22. P. Nath, R.L. Arnowitt, A.H. Chamseddine, Nucl. Phys. B 227, 121 (1983)

    Article  ADS  Google Scholar 

  23. L.J. Hall, J.D. Lykken, S. Weinberg, Phys. Rev. D 27, 2359 (1983)

    Article  ADS  Google Scholar 

  24. P. Nath, Supersymmetry, Supergravity, and Unification (Cambridge University Press, 2016)

  25. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012)

    Article  ADS  Google Scholar 

  26. S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188 (2012)

    Article  ADS  Google Scholar 

  27. G. Kane, P. Kumar, R. Lu, B. Zheng, Phys. Rev. D 85, 075026 (2012)

    Article  ADS  Google Scholar 

  28. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, JHEP 1209, 107 (2012)

    Article  ADS  Google Scholar 

  29. J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012)

    Article  ADS  Google Scholar 

  30. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev, X. Tata, Phys. Rev. D 87, 035017 (2013)

    Article  ADS  Google Scholar 

  31. P. Nath, R.L. Arnowitt, A.H. Chamseddine, Applied N=1 Supergravity, The ICTP Series in Theoretical Physics: Volume 1 (World Scientific, 1984)

  32. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, Front. Phys. 80, 1 (2000)

    Google Scholar 

  33. M. Carena, H.E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003)

    Article  ADS  Google Scholar 

  34. A. Djouadi, Phys. Rep. 459, 1 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012)

    Article  ADS  Google Scholar 

  36. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012)

    Article  ADS  Google Scholar 

  37. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, JHEP 1203, 014 (2012)

    Article  ADS  Google Scholar 

  38. S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188 (2012)

    Article  ADS  Google Scholar 

  39. C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri, R. Trotta, JCAP 1304, 013 (2013)

    Article  ADS  Google Scholar 

  40. A. Aboubrahim, P. Nath, Phys. Rev. D 96, 075015 (2017)

    Article  ADS  Google Scholar 

  41. S. Bertolini, F. Borzumati, A. Masiero, G. Ridolfi, Nucl. Phys. B 353, 591 (1991)

    Article  ADS  Google Scholar 

  42. R. Barbieri, G.F. Giudice, Phys. Lett. B 309, 86 (1993)

    Article  ADS  Google Scholar 

  43. M.E. Gomez, T. Ibrahim, P. Nath, S. Skadhauge, Phys. Rev. D 74, 015015 (2006)

    Article  ADS  Google Scholar 

  44. S.R. Choudhury, N. Gaur, Phys. Lett. B 451, 86 (1999)

    Article  ADS  Google Scholar 

  45. K.S. Babu, C.F. Kolda, Phys. Rev. Lett. 84, 228 (2000)

    Article  ADS  Google Scholar 

  46. C. Bobeth, T. Ewerth, F. Kruger, J. Urban, Phys. Rev. D 64, 074014 (2001)

    Article  ADS  Google Scholar 

  47. R.L. Arnowitt, B. Dutta, T. Kamon, M. Tanaka, Phys. Lett. B 538, 121 (2002)

    Article  ADS  Google Scholar 

  48. T. Ibrahim, P. Nath, Phys. Rev. D 67, 016005 (2003)

    Article  ADS  Google Scholar 

  49. T. Ibrahim, P. Nath, Rev. Mod. Phys. 80, 577 (2008)

    Article  ADS  Google Scholar 

  50. K.S. Babu et al., arXiv:1311.5285 [hep-ph]

  51. R.L. Arnowitt, P. Nath, Phys. Rev. D 49, 1479 (1994)

    Article  ADS  Google Scholar 

  52. P. Nath, P. Fileviez Perez, Phys. Rep. 441, 191 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Liu, P. Nath, Phys. Rev. D 87, 095012 (2013)

    Article  ADS  Google Scholar 

  54. L.E. Ibanez, G.G. Ross, C.R. Physique 8, 1013 (2007)

    Article  ADS  Google Scholar 

  55. K.L. Chan, U. Chattopadhyay, P. Nath, Phys. Rev. D 58, 096004 (1998)

    Article  ADS  Google Scholar 

  56. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003)

    Article  ADS  Google Scholar 

  57. H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas, X. Tata, JHEP 0306, 054 (2003)

    Article  ADS  Google Scholar 

  58. J.L. Feng, K.T. Matchev, T. Moroi, Phys. Rev. Lett. 84, 2322 (2000)

    Article  ADS  Google Scholar 

  59. S. Cassel, D.M. Ghilencea, G.G. Ross, Nucl. Phys. B 825, 203 (2010)

    Article  ADS  Google Scholar 

  60. D. Feldman, G. Kane, E. Kuflik, R. Lu, Phys. Lett. B 704, 56 (2011)

    Article  ADS  Google Scholar 

  61. H. Baer, V. Barger, P. Huang, X. Tata, JHEP 1205, 109 (2012)

    Article  ADS  Google Scholar 

  62. M. Drees, J.S. Kim, Phys. Rev. D 93, 095005 (2016)

    Article  ADS  Google Scholar 

  63. J.S. Kim, K. Rolbiecki, R. Ruiz, J. Tattersall, T. Weber, Phys. Rev. D 94, 095013 (2016)

    Article  ADS  Google Scholar 

  64. A. Aboubrahim, W. Feng, P. Nath, JHEP 04, 144 (2020)

    Article  ADS  Google Scholar 

  65. G.W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  66. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011)

    Article  ADS  Google Scholar 

  67. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011)

    Article  ADS  Google Scholar 

  68. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009)

    Article  ADS  Google Scholar 

  69. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 80, 3 (2020)

    Article  ADS  Google Scholar 

  70. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101, 014029 (2020)

    Article  ADS  Google Scholar 

  71. J. Grange et al. [Muon g-2 Collaboration], arXiv:1501.06858 [physics.ins-det]

  72. T. Mibe [J-PARC g-2 Collaboration], Nucl. Phys. Proc. Suppl. 218, 242 (2011)

    Article  ADS  Google Scholar 

  73. D.A. Kosower, L.M. Krauss, N. Sakai, Phys. Lett. 133B, 305 (1983)

    Article  ADS  Google Scholar 

  74. T.C. Yuan, R.L. Arnowitt, A.H. Chamseddine, P. Nath, Z. Phys. C 26, 407 (1984)

    Article  ADS  Google Scholar 

  75. J.L. Lopez, D.V. Nanopoulos, X. Wang, Phys. Rev. D 49, 366 (1994)

    Article  ADS  Google Scholar 

  76. U. Chattopadhyay, P. Nath, Phys. Rev. D 53, 1648 (1996)

    Article  ADS  Google Scholar 

  77. T. Moroi, Phys. Rev. D 53, 6565 (1996) [Erratum: Phys. Rev. D 56, 4424 (1997)]

    Article  ADS  Google Scholar 

  78. T. Ibrahim, P. Nath, Phys. Rev. D 62, 015004 (2000)

    Article  ADS  Google Scholar 

  79. S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B 690, 62 (2004)

    Article  ADS  Google Scholar 

  80. S. Akula, P. Nath, Phys. Rev. D 87, 115022 (2013)

    Article  ADS  Google Scholar 

  81. T. Ibrahim, P. Nath, Phys. Rev. D 61, 095008 (2000)

    Article  ADS  Google Scholar 

  82. T. Ibrahim, U. Chattopadhyay, P. Nath, Phys. Rev. D 64, 016010 (2001)

    Article  ADS  Google Scholar 

  83. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) [Erratum: Phys. Rev. Lett. 103, 099905 (2009)].

    Article  ADS  Google Scholar 

  84. R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 69, 725 (1992)

    Article  ADS  Google Scholar 

  85. P.A.R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  86. K. Griest, D. Seckel, Phys. Rev. D 43, 3191 (1991)

    Article  ADS  Google Scholar 

  87. N.F. Bell, Y. Cai, A.D. Medina, Phys. Rev. D 89, 115001 (2014)

    Article  ADS  Google Scholar 

  88. M.J. Baker et al., JHEP 1512, 120 (2015)

    ADS  Google Scholar 

  89. For some recent works see: P. Nath, A.B. Spisak, Phys. Rev. D 93, 095023 (2016)

    Article  ADS  Google Scholar 

  90. A. Aboubrahim, P. Nath, A.B. Spisak, Phys. Rev. D 95, 115030 (2017)

    Article  ADS  Google Scholar 

  91. M. Abdughani, L. Wu, arXiv:1908.11350 [hep-ph]

  92. T. Marrodn Undagoltia, L. Rauch, J. Phys. G 43, 013001 (2016)

    Article  ADS  Google Scholar 

  93. A. Aboubrahim, P. Nath, Phys. Rev. D 100, 015042 (2019)

    Article  ADS  Google Scholar 

  94. K.J. Bae, H. Baer, A. Lessa, H. Serce, JCAP 1410, 082 (2014)

    Article  ADS  Google Scholar 

  95. D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray, A.H.G. Peter, Proc. Natl. Acad. Sci. 112, 12249 (2015)

    Article  ADS  Google Scholar 

  96. F. Governato et al., Mon. Not. Roy. Astron. Soc. 422, 1231 (2012)

    Article  ADS  Google Scholar 

  97. P. Svrcek, E. Witten, JHEP 0606, 051 (2006)

    Article  ADS  Google Scholar 

  98. J.E. Kim, D.J.E. Marsh, Phys. Rev. D 93, 025027 (2016)

    Article  ADS  Google Scholar 

  99. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95, 043541 (2017)

    Article  ADS  Google Scholar 

  100. J. Halverson, C. Long, P. Nath, Phys. Rev. D 96, 056025 (2017)

    Article  ADS  Google Scholar 

  101. M. Battaglieri et al., arXiv:1707.04591 [hep-ph]

  102. M. Crisler et al. [SENSEI Collaboration], Phys. Rev. Lett. 121, 061803 (2018)

    Article  ADS  Google Scholar 

  103. D. Feldman, B. Kors, P. Nath, Phys. Rev. D 75, 023503 (2007)

    Article  ADS  Google Scholar 

  104. C. Blanco, J.P. Harding, D. Hooper, JCAP 1804, 060 (2018)

    Article  ADS  Google Scholar 

  105. K.R. Dienes, J. Fennick, J. Kumar, B. Thomas, Phys. Rev. D 97, 063522 (2018)

    Article  ADS  Google Scholar 

  106. T.G. Rizzo, JHEP 1807, 118 (2018)

    Article  ADS  Google Scholar 

  107. D. Feldman, Z. Liu, P. Nath, Phys. Rev. D 79, 063509 (2009)

    Article  ADS  Google Scholar 

  108. V.V. Alekseev et al., Phys. Part. Nucl. 48, 687 (2017)

    Article  Google Scholar 

  109. M. Tinivella, arXiv:1610.03672 [astro-ph.HE]

  110. S. Ting, Nucl. Phys. Proc. Suppl. 243–244, 12 (2013)

    Article  ADS  Google Scholar 

  111. T.R. Slatyer, arXiv:1710.05137 [hep-ph]

  112. B. Holdom, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  113. B. Holdom, Phys. Lett. B 259, 329 (1991)

    Article  ADS  Google Scholar 

  114. B. Kors, P. Nath, Phys. Lett. B 586, 366 (2004)

    Article  ADS  Google Scholar 

  115. B. Kors, P. Nath, JHEP 0412, 005 (2004)

    Article  ADS  Google Scholar 

  116. B. Kors, P. Nath, JHEP 0507, 069 (2005)

    Article  ADS  Google Scholar 

  117. K. Cheung, T.C. Yuan, JHEP 0703, 120 (2007)

    Article  ADS  Google Scholar 

  118. D. Feldman, Z. Liu, P. Nath, Phys. Rev. D 75, 115001 (2007)

    Article  ADS  Google Scholar 

  119. D. Feldman, Z. Liu, P. Nath, JHEP 0611, 007 (2006)

    Article  ADS  Google Scholar 

  120. D. Feldman, P. Fileviez Perez, P. Nath, JHEP 1201, 038 (2012)

    Article  ADS  Google Scholar 

  121. W.Z. Feng, P. Nath, G. Peim, Phys. Rev. D 85, 115016 (2012)

    Article  ADS  Google Scholar 

  122. W.Z. Feng, P. Nath, Phys. Lett. B 731, 43 (2014)

    Article  ADS  Google Scholar 

  123. W.Z. Feng, P. Nath, Mod. Phys. Lett. A 32, 1740005 (2017)

    Article  ADS  Google Scholar 

  124. W.Z. Feng, Z. Liu, P. Nath, JHEP 1604, 090 (2016)

    ADS  Google Scholar 

  125. B. Patt, F. Wilczek, arXiv:hep-ph/0605188

  126. A. Aboubrahim, P. Nath, Phys. Rev. D 99, 055037 (2019)

    Article  ADS  Google Scholar 

  127. J.A. Evans, J. Shelton, JHEP 1604, 056 (2016)

    ADS  Google Scholar 

  128. A. Aboubrahim, W. Feng, P. Nath, JHEP 02, 118 (2020)

    Article  ADS  Google Scholar 

  129. K.S. Babu, I. Gogoladze, P. Nath, R.M. Syed, Phys. Rev. D 72, 095011 (2005)

    Article  ADS  Google Scholar 

  130. K.S. Babu, I. Gogoladze, P. Nath, R.M. Syed, Phys. Rev. D 74, 075004 (2006)

    Article  ADS  Google Scholar 

  131. For applications see: P. Nath, R.M. Syed, Phys. Rev. D 81, 037701 (2010)

    Article  ADS  Google Scholar 

  132. P. Nath, R.M. Syed, J. Phys.: Conf. Ser. 1258, 012014 (2019)

    Google Scholar 

  133. M.A. Ajaib, I. Gogoladze, Q. Shafi, Phys. Rev. D 88, 095019 (2013)

    Article  ADS  Google Scholar 

  134. P. Nath, R.M. Syed, J. Phys.: Conf. Ser. 1258, 012014 (2019)

    Google Scholar 

  135. B. Ananthanarayan, G. Lazarides, Q. Shafi, Phys. Rev. D 44, 1613 (1991)

    Article  ADS  Google Scholar 

  136. A. Masiero, D.V. Nanopoulos, K. Tamvakis, T. Yanagida, Phys. Lett. B 115, 380 (1982)

    Article  ADS  Google Scholar 

  137. B. Grinstein, Nucl. Phys. B 206, 387 (1982)

    Article  ADS  Google Scholar 

  138. K.S. Babu, I. Gogoladze, Z. Tavartkiladze, Phys. Lett. B 650, 49 (2007)

    Article  ADS  Google Scholar 

  139. K.S. Babu, I. Gogoladze, P. Nath, R.M. Syed, Phys. Rev. D 85, 075002 (2012)

    Article  ADS  Google Scholar 

  140. L. Du, X. Li, D.X. Zhang, JHEP 1404, 027 (2014)

    Article  ADS  Google Scholar 

  141. T.E. Clark, T.K. Kuo, N. Nakagawa, Phys. Lett. B 115, 26 (1982)

    Article  ADS  Google Scholar 

  142. C.S. Aulakh, R.N. Mohapatra, Phys. Rev. D 28, 217 (1983)

    Article  ADS  Google Scholar 

  143. C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic, F. Vissani, Phys. Lett. B 588, 196 (2004)

    Article  ADS  Google Scholar 

  144. C.S. Aulakh, S.K. Garg, Nucl. Phys. B 757, 47 (2006)

    Article  ADS  Google Scholar 

  145. C.S. Aulakh, I. Garg, C.K. Khosa, Nucl. Phys. B 882, 397 (2014)

    Article  ADS  Google Scholar 

  146. P. Nath, R.M. Syed, Phys. Rev. D 93, 055005 (2016)

    Article  ADS  Google Scholar 

  147. P. Nath, R.M. Syed, Phys. Lett. B 506, 68 (2001)

    Article  ADS  Google Scholar 

  148. P. Nath, R.M. Syed, Phys. Lett. B 508, 216 (2001)

    Article  ADS  Google Scholar 

  149. P. Nath, R.M. Syed, Nucl. Phys. B 618, 138 (2001)

    Article  ADS  Google Scholar 

  150. P. Nath, R.M. Syed, Nucl. Phys. B 676, 64 (2004)

    Article  ADS  Google Scholar 

  151. R.M. Syed, arXiv:hep-ph/0508153

  152. B. Bajc, V. Susic, JHEP 1402, 058 (2014)

    Article  ADS  Google Scholar 

  153. K.S. Babu, B. Bajc, V. Susic, JHEP 1505, 108 (2015)

    Article  ADS  Google Scholar 

  154. J.C. Callaghan, S.F. King, G.K. Leontaris, JHEP 1312, 037 (2013)

    Article  ADS  Google Scholar 

  155. N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, JHEP 0706, 060 (2007)

    Article  ADS  Google Scholar 

  156. S. Dimopoulos, S. Raby, F. Wilczek, Phys. Rev. D 24, 1681 (1981)

    Article  ADS  Google Scholar 

  157. P. Nath, Int. J. Mod. Phys. A 33, 1830017 (2018)

    Article  ADS  Google Scholar 

  158. A. Aboubrahim, P. Nath, Phys. Rev. D 98, 015009 (2018)

    Article  ADS  Google Scholar 

  159. A. Aboubrahim, P. Nath, Phys. Rev. D 98, 095024 (2018)

    Article  ADS  Google Scholar 

  160. A. Aboubrahim, P. Nath, Phys. Rev. D 100, 015042 (2019)

    Article  ADS  Google Scholar 

  161. P. Nath et al., Nucl. Phys. Proc. Suppl. 200-202, 185 (2010)

    Article  ADS  Google Scholar 

  162. X. Cid Vidal et al. [Working Group 3], arXiv:1812.07831 [hep-ph]

  163. M. Cepeda et al. [HL/HE WG2 group], arXiv:1902.00134 [hep-ph]

  164. N. Arkani-Hamed, T. Han, M. Mangano, L.T. Wang, Phys. Rep. 652, 1 (2016)

    Article  ADS  Google Scholar 

  165. T. Golling et al., Beyond the Standard Model Phenomena, in Physics at the FCC-hh, a 100 TeV pp collider, CERN Yellow Rep. (CERN, 2017), Chap. 3, p. 441

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pran Nath.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, P. Supersymmetry unification, naturalness, and discovery prospects at HL-LHC and HE-LHC. Eur. Phys. J. Spec. Top. 229, 3047–3059 (2020). https://doi.org/10.1140/epjst/e2020-000021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000021-4

Navigation