Skip to main content
Log in

Stochastic resonance in an asymmetric tri-stable system driven by correlated noises and periodic signal

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper proposes an Asymmetric Tri-stable Stochastic Resonance (ATSSR) system that is driven by a periodic signal and a combination of correlated non-Gaussian noise and Gaussian white noise. The authors obtain the Markov process using the unified color noise approximation method and derive analytical expressions for the steady-state probability density, the Mean First-Pass Time, and the spectral amplification under the adiabatic approximation limit. Afterwards, the effects of various system parameters on them are analyzed, and the results show that both non-Gaussian noise and Gaussian white noise can induce stochastic resonance, with stronger resonance occurring when the two types of noise are correlated. Then, a periodic attenuated pulse signal and a harmonic vibration signal are constructed, which are applied in simulated experiments to detect fault signals using the ATSSR system. The experimental results demonstrate the outstanding performances in detecting fault signals and confirm its the feasibility for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R Benzi, G Parisi, A Sutera and A Vulpiani Tellus 34 10 (1982)

    Article  ADS  Google Scholar 

  2. R Benzi Nonlinear Processes in Geophysics 17 431 (2010)

    Article  ADS  Google Scholar 

  3. L F He, Y L Yang and T Q Zhang Chinese Journal of Scientific Instrument 40 47 (2019)

    Google Scholar 

  4. J M Liu, J Mao, B Huang and P G Liu Physics Letters A 382 3071 (2018)

    Article  ADS  Google Scholar 

  5. Z J Qiao, Y G Lei, J Lin and S T Niu Physical Review E 94 052214 (2016)

    Article  ADS  Google Scholar 

  6. Q Y Wang, H H Zhang and G R Chen Chaos An Interdisciplinary Journal of Nonlinear Science 22 043123 (2012)

    Article  MathSciNet  Google Scholar 

  7. H T Yu, J Wang, J W Du, B Deng, X L Wei and C Liu Chaos An Interdisciplinary Journal of Nonlinear Science 23 013128 (2013)

    Article  MathSciNet  Google Scholar 

  8. S L Lu, Q B He and F R Kong Digital Signal Processing 36 93 (2015)

    Article  MathSciNet  Google Scholar 

  9. G Zhang, Y J Zhang, T Q Zhang and M Rana Chinese Journal of Physics 56 1173 (2018)

    Article  ADS  Google Scholar 

  10. P M Shi, Q Li and D Y Han Chinese Journal of Physics 54 526 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. M J He, W Xu and Z K Sun Nonlinear Dynamics 79 1787 (2015)

    Article  MathSciNet  Google Scholar 

  12. S B Jiao, R Yang, Q Zhang and G Xie Acta Physica Sinica 64 20502 (2015)

    Article  Google Scholar 

  13. M A Fuentes, R Toral and H S Wio Physica A: Statistical Mechanics and its Applications 295 114 (2001)

    Article  ADS  Google Scholar 

  14. Y F Jin and B Li Acta Physica Sinica 63 210501 (2014)

    Article  Google Scholar 

  15. Y F Guo, Y J Shen and J G Tan Communications in Nonlinear Science and Numerical Simulation 38 257 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. G Zhang, D Y Hu and T Q Zhang Chinese Journal of Physics 56 2718 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y F Guo, B Xi, F Wei and J G Tan Modern Physics Letters B 32 1850339 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. S H Li and J Huang AIP Advances 10 025310 (2020)

    Article  ADS  Google Scholar 

  19. L F He, C L Tan and G Zhang The European Physical Journal Plus 136 1 (2021)

    Article  ADS  Google Scholar 

  20. G Zhang, C Jiang and T Q Zhang Fluctuation and Noise Letters 20 2150004 (2021)

    Article  ADS  Google Scholar 

  21. P M Shi, W Y Zhang, D Y Han and M D Li Chaos Solitons & Fractals 128 155 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. P F Xu and Y F Jin Applied Mathematical Modelling 77 408 (2020)

    Article  MathSciNet  Google Scholar 

  23. W Y Zhang, P M Shi, M D Li, Y X Mao and D Y Han IEEE Access 7 173753 (2019)

    Article  Google Scholar 

  24. H S Wio and R Toral Physica D: Nonlinear Phenomena 193 161 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61771085), Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601), and Natural Science Foundation of Chongqing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoman Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

R is the transition matrix, which is:

$$ R = \left( {\begin{array}{*{20}c} { - r_{1,2} } & {r_{2,1} } & 0 \\ {r_{1,2} } & { - \left( {r_{2,1} + r_{2,3} } \right)} & {r_{3,2} } \\ 0 & {r_{2,3} } & { - r_{3,2} } \\ \end{array} } \right) $$
(A.1)

In the above formula, ri,j represents the transition probability of Brownian particles from si to sj. The specific expression of ri,j is:

$$ \begin{aligned} r_{{m,m + 1}} & = \frac{{\sqrt {\left| {U^{{\prime \prime }} \left( {s_{m} } \right)U^{{\prime \prime }} \left( {u_{m} } \right)} \right|} }}{{2\pi }}\exp \left[ { - \frac{{\tilde{U}\left( {u_{m} ,t} \right) - \tilde{U}\left( {s_{m} ,t} \right)}}{{D_{{{\text{eff}}}} }}} \right], \\ m & = 1,2 \\ \end{aligned} $$
(A.2a)
$$ \begin{aligned} r_{{n,n - 1}} & = \frac{{\sqrt {\left| {U^{{\prime \prime }} \left( {s_{n} } \right)U^{{\prime \prime }} \left( {u_{{n - 1}} } \right)} \right|} }}{{2\pi }}\exp \left[ { - \frac{{\tilde{U}\left( {u_{{n - 1}} ,t} \right) - \tilde{U}\left( {s_{n} ,t} \right)}}{{D_{{{\text{eff}}}} }}} \right], \\ n & = 2,3 \\ \end{aligned} $$
(A.2b)

From Eq. (13), by expanding Eq. (A.2a) and Eq. (A.2b) to the first-order term of \(\cos \left( {2\pi f_{0} t} \right)\), it can be obtained:

$$ r_{m,m + 1} = r_{{_{m,m + 1} }}^{\left( 0 \right)} + A_{0} D_{{{\text{eff}}}}^{ - 1} r_{{_{m,m + 1} }}^{\left( 0 \right)} \Delta g_{m,m + 1} \cos \left( {2\pi f_{0} t} \right) $$
(A.3a)
$$ r_{n,n - 1} = r_{{_{n,n - 1} }}^{\left( 0 \right)} + A_{0} D_{{{\text{eff}}}}^{ - 1} r_{{_{n,n - 11} }}^{\left( 0 \right)} \Delta g_{n,n - 1} \cos \left( {2\pi f_{0} t} \right) $$
(A.3b)

With

$$ r_{{_{m,m + 1} }}^{\left( 0 \right)} = \frac{{\sqrt {\left| {U^{\prime \prime } \left( {s_{m} } \right)U^{\prime \prime } \left( {u_{m} } \right)} \right|} }}{2\pi }\exp \left[ { - \frac{{U_{0} \left( {u_{m} } \right) - U_{0} \left( {s_{m} } \right)}}{{D_{{{\text{eff}}}} }}} \right] $$
(A.4a)
$$ r_{{_{n,n - 1} }}^{\left( 0 \right)} = \frac{{\sqrt {\left| {U^{\prime \prime } \left( {s_{n} } \right)U^{\prime \prime } \left( {u_{n - 1} } \right)} \right|} }}{2\pi }\exp \left[ { - \frac{{U_{0} \left( {u_{n - 1} } \right) - U_{0} \left( {s_{n} } \right)}}{{D_{{{\text{eff}}}} }}} \right] $$
(A.4b)
$$ \Delta g_{m,m + 1} = g\left( {u_{m} ,s_{m} } \right),\Delta g_{n,n - 1} = g\left( {u_{n - 1} ,s_{n} } \right) $$
(A.4c)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Liu, X. & Jiang, Z. Stochastic resonance in an asymmetric tri-stable system driven by correlated noises and periodic signal. Indian J Phys 97, 4017–4029 (2023). https://doi.org/10.1007/s12648-023-02729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02729-5

Keywords

Navigation