Skip to main content

Advertisement

Log in

Statistical aspects of the massive photon gases in the presence of a minimal length

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work attempts to investigate the influence of the generalized uncertainty principle on the statistical parameters of the massive photon gases. The modified energy-momentum relations for the de Broglie Proca electrodynamics are obtained. Based on modified energy-momentum relations, we find thermodynamical characteristics such as partition function, mean energy, pressure, and entropy of the massive photon gases in the presence of a minimal length scale. Also, the upper bound on the isotropic minimal length which is close to the electroweak length scale is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F Scardigli Phys. Lett. B 452 39 (1999)

  2. M Maggiore Phys. Rev. D 49 5182 (1994)

  3. M Sprenger P Nicolini and M Bleicher Eur J. Phys. 33 853 (2012)

    Google Scholar 

  4. S Hossenfelder, M Bleicher, S Hofmann and J Ruppert S Scherer and H Stoecker Phys Lett. B 575 85 (2003)

    ADS  Google Scholar 

  5. C Bambi and F R Urban Class. Quantum Gravity 25 095006 (2008)

    ADS  Google Scholar 

  6. S Das and E C Vagenas Phys. Rev. Lett. 101 221301 (2008)

    ADS  Google Scholar 

  7. M Khalil Adv. High Energy Phys. 2014 619498 (2014)

    Google Scholar 

  8. H Shababi Eur. Phys. J. Plus 137 376 (2022)

    Google Scholar 

  9. H Shababi and M Moussa Int. J. Theor. Phys. 61 205 (2022)

    Google Scholar 

  10. J Vahedi, K Nozari and P Pedram Grav. Cosmol. 18 211 (2012)

    ADS  Google Scholar 

  11. K Nouicer Phys. Lett. B 646 63 (2007)

    ADS  MathSciNet  Google Scholar 

  12. P Pedram, M Amirfakhrian and H Shababi Int. J. Mod. Phys. D 24 1550016 (2015)

    ADS  Google Scholar 

  13. H Shababi and W S Chung Phys. Lett. B 770 445 (2017)

    ADS  Google Scholar 

  14. P Pedram Phys. Lett. B 718 638 (2012)

    ADS  Google Scholar 

  15. P Pedram Phys. Lett. B 714 317 (2012)

    ADS  Google Scholar 

  16. P Bosso and S Das Int. J. Mod. Phys. D 28 1950068 (2019)

    ADS  Google Scholar 

  17. S Das and E C Vagenas Can. J. Phys. 87 233 (2009)

    ADS  Google Scholar 

  18. K Nouricer J. Phys. A 38 10027 (2005)

    ADS  MathSciNet  Google Scholar 

  19. B Khosropour Acta Phys. Polon. B 48 217 (2017)

    ADS  MathSciNet  Google Scholar 

  20. A F Ali, S Das and E C Vagenas Phys. Lett. B 678 497 (2009)

    ADS  MathSciNet  Google Scholar 

  21. S Das, E C Vagenas and A F Ali Phys. Lett. B 690 407 (2010)

    ADS  Google Scholar 

  22. S K Moayedi, M R Setare and B Khosropour Int. J. Mod. Phys. A 28 1350142 (2013)

    ADS  Google Scholar 

  23. T V Fityo Phys. Lett. A 372 5872 (2008)

    ADS  MathSciNet  Google Scholar 

  24. L Petruzziello and F Illuminati Nat. Commun. 12 4449 (2021)

    ADS  Google Scholar 

  25. K Nozari, V Hosseinzadeh and M A Gorji Phys. Lett. B 750 218 (2015)

    ADS  Google Scholar 

  26. E Castellanos and J I Rivas Phys. Rev. D 91 084019 (2015)

    ADS  Google Scholar 

  27. E Castellanos and C Escamilla-Rivera Mod. Phys. Lett. A 32 1750007 (2017)

    ADS  Google Scholar 

  28. B Khosropour Int. J. Geom. Methods Mod. phys. 18 2150199 (2021)

    MathSciNet  Google Scholar 

  29. B Majumder and S Sen Phys. Lett. B 717 291 (2012)

    ADS  Google Scholar 

  30. S Hossenfelder Living Rev. Relativity 16 2 (2013)

    ADS  Google Scholar 

  31. D Singleton, M Bishop, J Lee and J Contreras MDPI in First Electronic Conference on Universe (Fresno State University) (2021)

  32. B Khosropour Phys. Lett. B 785 3 (2018)

    ADS  MathSciNet  Google Scholar 

  33. C Quesne and V M Tkachuk J. Phys. A Math. Gen. 39 10909 (2006)

    ADS  Google Scholar 

  34. C Quesne and V M Tkachuk Czech. J. Phys. 56 1269 (2006)

    ADS  Google Scholar 

  35. L de Broglie J. Phys. Radium 3 422 (1922)

    Google Scholar 

  36. A D A M Spallicci, J A Helayël-Neto, M López-Corredoira and S Capozziello Eur. Phys. J. C 81 4 (2021)

    ADS  Google Scholar 

  37. D D Ryutov Plasma Phys. Control Fusion 40 B429 (2007)

    ADS  Google Scholar 

  38. R R Cuzinato, E M Demorais, L G Medeiros, C de Naldoni Souza and B M Pimentel Eur. Phys. Lett. 118 19001 (2017)

    ADS  Google Scholar 

  39. F Brau J. Phys. A Math. Gen. 32 7691 (1999)

    ADS  MathSciNet  Google Scholar 

  40. A Proca and C R Acad Sci. Paris 202 1366 (1936)

    Google Scholar 

  41. C Herdeiro, M O Sampaio and M Wang Phys. Rev. D 85 024005 (2012)

    ADS  Google Scholar 

  42. M Wang, M O Sampaio and C Herdeiro Phys. Rev. D 87 044011 (2013)

    ADS  Google Scholar 

  43. A Övgün and I Sakalli Int. J. Theor. Phys. 57 322 (2018)

    Google Scholar 

  44. I Sakalli and A Övgün Eur. Phys. J. Plus 130 110 (2015)

    Google Scholar 

  45. H Gursel and I Sakalli Can. J. Phys. 94 147 (2016)

    ADS  Google Scholar 

  46. R Jora arXiv:2006.13217v1

  47. W Greiner and J Reinhardt Field Quantization (Berlin: Springer) (1996)

    MATH  Google Scholar 

  48. A Accioly, J A Helayël-Neto and E Scatena Phys. Rev. D 82 065026 (2010)

    ADS  Google Scholar 

  49. A Accioly and H Mukai Braz. J. Phys. 28 35 (1998)

    ADS  Google Scholar 

  50. R R Cuzinatto, C A M de Melo and P J Pompeia Ann. Phys. 322 1211 (2007)

    ADS  Google Scholar 

  51. J Magueijo Phys. Rev. D 73 124020 (2006)

    ADS  Google Scholar 

  52. C M Reyes Phys. Rev. D 80 105008 (2009)

    ADS  Google Scholar 

  53. M Kober Phys. Rev. D 82 085017 (2010)

    ADS  Google Scholar 

  54. R K Pathria and P D Beale Statistical Mechanics (Cambridge: Academic Press) (2011)

    MATH  Google Scholar 

  55. I S Gradshteyn and I M Ryzhik Table of Integrals, Seris, and Products (Cambridge: Academic Press) (2014)

    Google Scholar 

  56. A Accioly, P Gaete, J Helayel-Neto, E Scatena and R Turcati Mod. Phys. Lett. A 26 1985 (2011)

    ADS  Google Scholar 

  57. A Accioly and H Mukai Nuovo Cimento B 112 1061 (1997)

    Google Scholar 

  58. M W Zemansky and R H Dittman Heat and Thermodynamics (New York: McGraw-Hill) (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Khosropour.

Ethics declarations

Conflict of interest

The author receives no fund from any institute or organization, therefore, the author declares that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we show that how energy, pressure, and entropy of the massive photon gases in the presence of a minimal length satisfy the thermodynamics laws.

First law: \(Q=ST\) is the heat supplied to the system and \(W=PV\) is the work done by the system on its surrounding, the first law of thermodynamics can be defined as follows: [58]

$$\begin{aligned} \Delta U=Q-W. \end{aligned}$$
(35)

Now, according to Eq. (30), we have

$$\begin{aligned} Q_{ML}= & {} S_{ML}T=\frac{gV}{(2\pi ^{2}\hbar ^{3})c\beta ^{2}}\left[ m^{2}-\frac{8}{\beta ^{2}c^{2}}+\frac{a^{2}}{\hbar ^{2}}\left( 12\frac{m^{2}}{\beta ^{2}}\right. \right. \nonumber \\{} & {} \quad \left. \left. -\frac{12}{\beta ^{2}c^{2}}+2m^{2}c^{2}(3-m^{2}c^{2})\right) \right] ,\nonumber \\ W_{ML}= & {} (P_{Pressure})_{ML}V=-\frac{g}{(2\pi ^{2}\hbar ^{3})c\beta ^{2}}\left[ \frac{2}{\beta ^{2}c^{2}}-\frac{m^{2}}{2}\right. \nonumber \\{} & {} \quad \left. +\frac{a^{2}}{\hbar ^{2}}\left( \frac{3}{\beta ^{2}c^{2}}-3\frac{m^{2}}{\beta ^{2}}-m^{2}c^{2}(3-m^{2}c^{2})\right) \right] . \end{aligned}$$
(36)

Based on Eqs. (35) and  (36), we can find the modified energy system as follows:

$$\begin{aligned} Q_{ML}-W_{ML}= & {} \frac{gV}{(2\pi ^{2}\hbar ^{3})c\beta ^{2}}\left[ \frac{m^{2}}{2}-\frac{6}{\beta ^{2}c^{2}}+\frac{a^{2}}{\hbar ^{2}}\left( 9\frac{m^{2}}{\beta ^{2}}\right. \right. \nonumber \\{} & {} \quad \left. \left. -9\frac{1}{\beta ^{2}c^{2}}+m^{2}c^{2}(3-m^{2}c^{2})\right) \right] . \end{aligned}$$
(37)

Second law: In a natural thermodynamics process, the total entropy of the interacting thermodynamics systems increases [49], so we can write

$$\begin{aligned} \Delta S\ge 0. \end{aligned}$$
(38)

Now, let us assume the entropy of massive photon gases, change from an initial state \(S_{1}\) with temperature \(T_{1}\) to a final state \(S_{2}\) with temperature \(T_{2}\). According to Eq. (30) and considering \(T_{2}>T_{1}\), the following nonequation can be found

$$\begin{aligned} S_{2\mathrm ML}-S_{1\mathrm ML}\ge 0,\nonumber \\ \Delta S_{ML}\ge 0. \end{aligned}$$
(39)

Third law: when temperature of the system drops to absolute zero, the entropy of the system tends to a universal constant(which can be taken to be zero). Based on Eq. (30), the modified entropy (\(S_{ML}\)) tends to zero in the limit \(T\rightarrow 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosropour, B. Statistical aspects of the massive photon gases in the presence of a minimal length. Indian J Phys 97, 4137–4142 (2023). https://doi.org/10.1007/s12648-023-02714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02714-y

Keywords

Navigation